Publications by authors named "Alfonso Molares"

Objectives: This study aimed to investigate the potential of a novel 3-dimensional (3D) mechanical wave velocity mapping technique, based on the natural mechanical waves produced by the heart itself, to approach a noninvasive 3D stiffness mapping of the left ventricle.

Background: Myocardial fibrosis is recognized as a pathophysiological substrate of major cardiovascular disorders such as cardiomyopathies and valvular heart disease. As fibrosis leads to increased myocardial stiffness, ultrasound elastography measurements could provide important clinical information.

View Article and Find Full Text PDF

This paper examines fundamental statistical properties of the active and reactive sound intensity in reverberant enclosures driven with pure tones. The existing theory for sound intensity in a diffuse sound field, which is based on Waterhouse's random wave model and therefore limited to the region of high modal overlap, is extended to the region of low modal overlap by taking account of the random fluctuations of the sound power emitted by the source that generates the sound field. The validity of the extended model is confirmed by experimental and numerical results.

View Article and Find Full Text PDF

Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room.

View Article and Find Full Text PDF

Energy considerations are of enormous practical importance in acoustics. In "energy acoustics," sources of noise are described in terms of the sound power they emit, the underlying assumption being that this property is independent of the particular environment where the sources are placed. However, it is well known that the sound power output of a source emitting a pure tone or a narrow band of noise actually varies significantly with its position in a reverberation room at low frequencies, and even larger variations occur between different rooms.

View Article and Find Full Text PDF