Publications by authors named "Alfonso De la Maza"

Background: Many skin diseases are associated with either increases or decreases in lamellar body secretion, or dysfunctional lamellar bodies. Consequently, diseased skin is characterized by reduced barrier function and altered lipid composition and organization. Human skin is commonly evaluated in vivo with non-invasive biophysical techniques.

View Article and Find Full Text PDF

Aim: In this work the effect of infrared (IR) radiation, at temperatures between 25 and 30°C, on the formation of free radicals (FRs) in the skin is studied. Additionally, the influence of IR radiation at high temperatures in the degradation of skin collagen is evaluated. In both experiments the protective effect against IR radiation of phospholipid nanostructures (bicosomes) incorporating β-carotene (Bcb) is also evaluated.

View Article and Find Full Text PDF

Epidermal lamellar bodies (LBs) are organelles that secrete their content, mainly lipids and enzymes, into the intercorneocyte space of the stratum corneum (SC) to form the lamellar structure of this tissue. Thus, LBs have a key role in permeability and the microbial cutaneous barrier. In this work, a complex lipid system that mimics the morphology, structure and composition of LBs has been designed.

View Article and Find Full Text PDF

Phospholipid-based nanostructures, bicelles and bicosomes, are proposed as carriers of the antioxidant β-carotene. The stability of these nanostructures and their carotenoid cargo was evaluated in an oxidation environment induced by ultraviolet A, visible and infrared A radiation (UVA-VIS-IRA). Additionally, the effect of these nanoaggregates on non-irradiated and irradiated skin microstructure was studied.

View Article and Find Full Text PDF

A rhenium tris-carbonyl derivative (fac-[Re(CO)3Cl(2-(1-dodecyl-1H-1,2,3,triazol-4-yl)-pyridine)]) was incorporated into phospholipid assemblies, called bicosomes, and the penetration of this molecule into skin was monitored using Fourier-transform infrared microspectroscopy (FTIR). To evaluate the capacity of bicosomes to promote the penetration of this derivative, the skin penetration of the Re(CO)3 derivative dissolved in dimethyl sulfoxide (DMSO), a typical enhancer, was also studied. Dynamic light scattering results (DLS) showed an increase in the size of the bicosomes with the incorporation of the Re(CO)3 derivative, and the FTIR microspectroscopy showed that the Re(CO)3 derivative incorporated in bicosomes penetrated deeper into the skin than when dissolved in DMSO.

View Article and Find Full Text PDF

Bicelles emerge as promising membrane models, and because of their attractive combination of lipid composition, small size and morphological versatility, they become new targets in skin research. Bicelles are able to modify skin biophysical parameters and modulate the skin's barrier function, acting to enhance drug penetration. Because of their nanostructured assemblies, bicelles have the ability to penetrate through the narrow intercellular spaces of the stratum corneum of the skin to reinforce its lipid lamellae.

View Article and Find Full Text PDF

Background: Normally, percutaneous absorption tests are carried out using skin biopsies for an apparent and acceptable physiological condition. However, under different pathological conditions, the stratum corneum (SC) barrier function is impaired.

Methods: The barrier function of the SC was assessed by correlation between the number of repeated applications of tape strips on the skin and its transepidermal water loss (TEWL), as well as by in vitro percutaneous absorption studies of different compounds, using Franz diffusion cells and porcine skin previously stripped.

View Article and Find Full Text PDF

The effect of bicelles formed by dipalmitoylphosphatidylcholine (DPPC)/dihexanoylphosphatidylcholine (DHPC) on stratum corneum (SC) lipids was studied by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy at different temperatures. Analysis of the lipid organization in terms of chain conformational order and lateral packing shows that the use of bicelles hampers the fluidification of SC lipids with temperature and leads to a lateral packing corresponding to a stable hexagonal phase. Grazing incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS) techniques confirm these results and give evidence of higher lamellar order after treatment with these bicelles.

View Article and Find Full Text PDF

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was applied to study the effects of the bicelles formed by dimyristoyl-glycero-phosphocholine (DMPC) and dihexanoyl-glycero-phosphocholine (DHPC) in porcine stratum corneum (SC) in vitro. A comparison of skin samples treated and untreated with bicelles at different temperatures was carried out. The analysis of variations after treatment in the position of the symmetric CH2 stretching, CH2 scissoring, and CH2 rocking vibrations reported important information about the effect of bicelles on the skin.

View Article and Find Full Text PDF

Zeins are maize storage proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner surface of the protein body membrane, and its N-terminal, proline-rich, repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation and forms cylindrical micelles in aqueous solution.

View Article and Find Full Text PDF

Ceramides are the major lipid constituent of lamellar sheets present in the intercellular spaces of the stratum corneum. These lamellar sheets are thought to provide the barrier property of the epidermis. It is generally accepted that the intercellular lipid domain is composed of approximately equimolar concentrations of free fatty acids, cholesterol, and ceramides.

View Article and Find Full Text PDF