Publications by authors named "Alfons Jordan"

Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for measuring organic trace gases in air. In traditional PTR-MS, both nonpolar and polar analytes are ionized with unit efficiency, as predicted from ion-molecule collision theories. This well-defined ion chemistry allows for direct quantification of analytes without prior calibration and therefore is an important characteristic of PTR-MS.

View Article and Find Full Text PDF

The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to /Δ of 8000), the application of variations in reduced electric field strength (/) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) / is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled.

View Article and Find Full Text PDF

In this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called 'synthacaine', a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O(+) result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O(+) and NO(+)) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules.

View Article and Find Full Text PDF

The isomers 4-methylethcathinone and N-ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR-MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass-to-charge ratio of 192 (C12 H18NO(+)). However, when utilising an advanced PTR-MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O(+) (which is commonly used in PTR-MS) to NO(+), O2(+) and Kr(+), characteristic product (fragment) ions are detected: C4H10N(+) (72 Da) for 4-methylethcathinone and C5 H12N(+) (86 Da) for N-ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds.

View Article and Find Full Text PDF

Rationale: Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here.

View Article and Find Full Text PDF

This work demonstrates for the first time the potential of using recent developments in proton transfer reaction mass spectrometry for the rapid detection and identification of chemical warfare agents (CWAs) in real-time. A high-resolution (m/Deltam up to 8000) and high-sensitivity (approximately 50 cps/ppbv) proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000 from Ionicon Analytik GmBH) has been successfully used to detect a number of CWA simulants at room temperature; namely dimethyl methylphosphonate, diethyl methylphosphonate, diisopropyl methylphosphonate, dipropylene glycol monomethyl ether and 2-chloroethyl ethyl sulfide. Importantly, we demonstrate in this paper the potential to identify CWAs with a high level of confidence in complex chemical environments, where multiple threat agents and interferents could also be present in trace amounts, thereby reducing the risk of false positives.

View Article and Find Full Text PDF

The influence of gel texture on retronasal aroma release during mastication was followed by means of real-time proton-transfer reaction mass spectrometry and compared to sensory perception of overall aroma intensity. A clear correlation was found between individual-specific consumption patterns and the respective physicochemical release patterns in vivo. A modified data analysis approach was used to monitor the aroma changes during the mastication process.

View Article and Find Full Text PDF