Selective oxidation reactions are an important class of the current chemical industry and will be highly important for future sustainable chemical production. Especially, the selective oxidation of primary alcohols is expected to be of high future interest, as alcohols can be obtained on technical scales from biomass fermentation. The oxidation of primary alcohols produces aldehydes, which are important intermediates.
View Article and Find Full Text PDFA new strategy affords "non-nano" carbon materials as dehydrogenation catalysts that perform similarly to nanocarbons. Polymer-based carbon precursors that combine a soft-template approach with ion adsorption and catalytic graphitization are key to this synthesis strategy, thus offering control over macroscopic shape, texture, and crystallinity and resulting in a hybrid amorphous/graphitic carbon after pyrolysis. From this intermediate the active carbon catalyst is prepared by removing the amorphous parts of the hybrid carbon materials via selective oxidation.
View Article and Find Full Text PDFThe Mo(10-x)V(x)O(y) solid-solution systems (0≤x≤10) were studied by electron paramagnetic resonance spectroscopy. The results show the existence of paramagnetic vanadyl VO(2+) species, whose concentration becomes maximal for Mo(5)V(5)O(y·). A quantitative analysis of the [VO(2+)] concentration as a function of the Mo/V ratio allows it to characterize the prevailing defect chemistry in the Mo(10-x)V(x)O(y) system.
View Article and Find Full Text PDFCuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper Cu[O2CCCH3NOMe](2)·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in air or under argon to yield CuO2 by in situ redox reaction.
View Article and Find Full Text PDFThe major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM.
View Article and Find Full Text PDF