Extreme atmospheric-marine events, known as medicanes (short for "Mediterranean hurricanes"), have affected the Mediterranean basin in recent years, resulting in extensive coastal flooding and storm surges, and have occasionally been responsible for several casualties. Considering that the development mechanism of these events is similar to tropical cyclones, it is plausible that these phenomena are strongly affected by sea surface temperatures (SSTs) during their development period (winter and autumn seasons). In this study, we compared satellite data and the numerical reanalysis of SSTs from 1969 to 2023 with in situ data from dataloggers installed at different depths off the coast of southeastern Sicily as well as from data available on Argo floats on the Mediterranean basin.
View Article and Find Full Text PDFIn this work, we analyze 12 meteorological events that occurred in the Mediterranean Sea during the period November 2011-November 2021 from a seismic point of view. In particular, we consider 8 Medicanes and 4 more common storms. Each of these events, in spite of the marked differences between them, caused heavy rainfall, strong wind gusts and violent storm surge with significant wave heights usually >3 m.
View Article and Find Full Text PDFMicroseism is the continuous background seismic signal caused by the interaction between the atmosphere, the hydrosphere and the solid Earth. Several studies have dealt with the relationship between microseisms and the tropical cyclones, but none focused on the small-scale tropical cyclones that occur in the Mediterranean Sea, called Medicanes. In this work, we analysed the Medicane Apollo which impacted the eastern part of Sicily during the period 25 October-5 November 2021 causing heavy rainfall, strong wind gusts and violent sea waves.
View Article and Find Full Text PDF