Publications by authors named "Alfe D"

Quantum Monte Carlo (QMC) methods represent a powerful family of computational techniques for tackling complex quantum many-body problems and performing calculations of stationary state properties. QMC is among the most accurate and powerful approaches to the study of electronic structure, but its application is often hindered by a steep learning curve; hence it is rarely addressed in undergraduate and postgraduate classes. This tutorial is a step toward filling this gap.

View Article and Find Full Text PDF

Water confined in nanoscale cavities plays a crucial role in everyday phenomena in geology and biology, as well as technological applications at the water-energy nexus. However, even understanding the basic properties of nano-confined water is extremely challenging for theory, simulations, and experiments. In particular, determining the melting temperature of quasi-one-dimensional ice polymorphs confined in carbon nanotubes has proven to be an exceptionally difficult task, with previous experimental and classical simulation approaches reporting values ranging from ∼180 K up to ∼450 K at ambient pressure.

View Article and Find Full Text PDF

Molecular crystals play a central role in a wide range of scientific fields, including pharmaceuticals and organic semiconductor devices. However, they are challenging systems to model accurately with computational approaches because of a delicate interplay of intermolecular interactions such as hydrogen bonding and Van der Waals dispersion forces. Here, by exploiting recent algorithmic developments, we report the first set of diffusion Monte Carlo lattice energies for all 23 molecular crystals in the popular and widely used X23 dataset.

View Article and Find Full Text PDF

Diffusion Monte Carlo (DMC) is an exact technique to project out the ground state (GS) of a Hamiltonian. Since the GS is always bosonic, in Fermionic systems, the projection needs to be carried out while imposing antisymmetric constraints, which is a nondeterministic polynomial hard problem. In practice, therefore, the application of DMC on electronic structure problems is made by employing the fixed-node (FN) approximation, consisting of performing DMC with the constraint of having a fixed, predefined nodal surface.

View Article and Find Full Text PDF

Electrides are a class of materials consisting of non-nuclear excess electrons as quasi-F centers or Farbe centers within a positively charged lattice framework, and have significant applications in the fields of electrochemistry, spintronics, and electrode materials. Using first-principles quantum mechanical calculations, we have demonstrated exotic electronic structures of zirconium-rich electrides, ZrX (X = O, Se, and Te), and obtained the quantitative values of charge transfer (oxidation states), and projected density of states associated with the localized quasi F-centers. The localized interstitial anionic electrons exhibit significant charge transfer values of approximately -1.

View Article and Find Full Text PDF

Molecular hydrogen has the potential to significantly reduce the use of carbon dioxide emitting energy processes. However, hydrogen gas storage is a major bottleneck for its large-scale use as current storage methods are energy intensive. Among different storage methods, physisorbing molecular hydrogen at ambient pressure and temperatures is a promising alternative-particularly in light of the advancements in tunable lightweight nanomaterials and high throughput screening methods.

View Article and Find Full Text PDF

Ice is one of the most important and interesting molecular crystals, exhibiting a rich and evolving phase diagram. Recent discoveries mean that there are now 20 distinct polymorphs; a structural diversity that arises from a delicate interplay of hydrogen bonding and van der Waals dispersion forces. This wealth of structures provides a stern test of electronic structure theories, with Density Functional Theory (DFT) often not able to accurately characterize the relative energies of the various ice polymorphs.

View Article and Find Full Text PDF

Although researchers have been working tirelessly since the COVID-19 outbreak, so far only three drugs - remdesivir, ronapreve and molnupiravir - have been approved for use in some countries which directly target the SARS-CoV-2 virus. Given the slow pace and substantial costs of new drug discovery and development, together with the urgency of the matter, repurposing of existing drugs for the ongoing disease is an attractive proposition. In a recent study, a high-throughput X-ray crystallographic screen was performed for a selection of drugs which have been approved or are in clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • The global pandemic highlighted the shortcomings of the traditional drug discovery process, revealing it to be costly, inefficient, and slow, particularly in screening potential antiviral compounds.
  • By merging machine learning techniques with physics-based methods, researchers are finding new ways to enhance the drug discovery workflow, capitalizing on the strengths of both approaches.
  • This innovative method relies on supercomputing capabilities, allowing for large-scale calculations, which have successfully identified lead antiviral compounds targeting COVID-19 proteins.
View Article and Find Full Text PDF

Grimme's dispersion-corrected density functional theory (DFT-D) methods have emerged among the most practical approaches to perform accurate quantum mechanical calculations on molecular systems ranging from small clusters to microscopic and mesoscopic samples, i.e., including hundreds or thousands of molecules.

View Article and Find Full Text PDF

In this work, the melting line of calcium has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using first-principles calculations. In the investigated pressure and temperature range (pressure between 10 and 40 GPa and temperature between 300 and 3000 K) it was possible to observe the face-centred phase of calcium and to confirm (and characterize for the first time at these conditions) the presence of the body-centred cubic and the simple cubic phase of calcium. The melting points obtained with the two techniques are in excellent agreement.

View Article and Find Full Text PDF

The possibility of depositing precisely mass-selected Ag clusters (Ag, Ag, and Ag) on Ru(0001) was instrumental in determining the importance of the in-plane coordination number (CN) and allowed us to establish a linear dependence of the Ag 3d core-level shift on CN. The fast cluster surface diffusion at room temperature, caused by the low interaction between silver and ruthenium, leads to the formation of islands with a low degree of ordering, as evidenced by the high density of low-coordinated atomic configurations, in particular CN = 4 and 5. On the contrary, islands formed upon Ag deposition show a higher density of atoms with CN = 6, thus indicating the formation of islands with a close-packed atomic arrangement.

View Article and Find Full Text PDF

In this work, we characterize the adsorption of pentacene molecules on Ir(111) and their behaviour as a function of temperature. While room temperature adsorption preserves the molecular structure of the five benzene rings and the bonds between carbon and hydrogen atoms, we find that complete C-H molecular break up takes place between 450 K and 550 K, eventually resulting in the formation of small graphene islands at temperatures larger than 800 K. Most importantly a reversible temperature-induced dehydrogenation process is found when the system is annealed/cooled in a hydrogen atmosphere with a pressure higher than 5 × 10 mbar.

View Article and Find Full Text PDF

Introduction: Cannabinoids possess anti-inflammatory, analgesic, and osteogenic effects in different cell types and tissues. The null hypothesis is delta-9-tetrahydrocannabinol (THC) might induce dental tissue repair and regeneration. The aim of this study was to investigate the effect of THC on human dental pulp cell (HDPC) viability and biomineralization as well as the molecular mechanism of THC-induced odonto/osteogenic differentiation of HDPCs.

View Article and Find Full Text PDF

The transport properties of iron under Earth's inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions remains high even if the electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab initio simulations taking into account consistently both thermal disorder and electronic correlations.

View Article and Find Full Text PDF

Due to their current and future technological applications, including realization of water filters and desalination membranes, water adsorption on graphitic sp-bonded carbon is of overwhelming interest. However, these systems are notoriously challenging to model, even for electronic structure methods such as density functional theory (DFT), because of the crucial role played by London dispersion forces and noncovalent interactions, in general. Recent efforts have established reference quality interactions of several carbon nanostructures interacting with water.

View Article and Find Full Text PDF

Fixed node diffusion quantum Monte Carlo (FN-DMC) is an increasingly used computational approach for investigating the electronic structure of molecules, solids, and surfaces with controllable accuracy. It stands out among equally accurate electronic structure approaches for its favorable cubic scaling with system size, which often makes FN-DMC the only computationally affordable high-quality method in large condensed phase systems with more than 100 atoms. In such systems, FN-DMC deploys pseudopotentials (PPs) to substantially improve efficiency.

View Article and Find Full Text PDF

Graphene has been proposed to be either fully transparent to van der Waals interactions to the extent of allowing switching between hydrophobic and hydrophilic behavior, or partially transparent (translucent), yet there has been considerable debate on this topic, which is still ongoing. In a combined experimental and theoretical study we investigate the effects of different metal substrates on the adsorption energy of atomic (argon) and molecular (carbon monoxide) adsorbates on high-quality epitaxial graphene. We demonstrate that while the adsorption energy is certainly affected by the chemical composition of the supporting substrate and by the corrugation of the carbon lattice, the van der Waals interactions between adsorbates and the metal surfaces are partially screened by graphene.

View Article and Find Full Text PDF

Wet carbon interfaces are ubiquitous in the natural world and exhibit anomalous properties, which could be exploited by emerging technologies. However, progress is limited by lack of understanding at the molecular level. Remarkably, even for the most fundamental system (a single water molecule interacting with graphene), there is no consensus on the nature of the interaction.

View Article and Find Full Text PDF
Article Synopsis
  • Computer simulation is crucial in materials science, helping balance accuracy and computational cost in methods used to analyze materials.
  • Molecular crystals are important for technology but are difficult to accurately describe due to their weak intermolecular forces and larger primitive cells compared to atomic solids.
  • Diffusion quantum Monte Carlo (DMC) offers high precision in studying diverse molecular crystals at a reasonable computational cost, making it valuable for predicting the properties of complex molecular structures.
View Article and Find Full Text PDF

Molecular adsorption on surfaces plays an important part in catalysis, corrosion, desalination, and various other processes that are relevant to industry and in nature. As a complement to experiments, accurate adsorption energies can be obtained using various sophisticated electronic structure methods that can now be applied to periodic systems. The adsorption energy of water on boron nitride substrates, going from zero to 2-dimensional periodicity, is particularly interesting as it calls for an accurate treatment of polarizable electrostatics and dispersion interactions, as well as posing a practical challenge to experiments and electronic structure methods.

View Article and Find Full Text PDF
Article Synopsis
  • - We conducted a detailed study on how a single water molecule sticks to the (001) surface of LiH, using advanced theoretical methods like periodic coupled cluster and quantum Monte Carlo theories.
  • - The study involved testing and comparing various quantum chemical methods to ensure accurate predictions of how strongly the water molecule is adsorbed on the surface.
  • - Our results suggest that these quantum chemical approaches are becoming trustworthy for studying electronic structures in condensed phases, and they might also help enhance existing van der Waals density-functionals used in other research.
View Article and Find Full Text PDF

Small-molecule binding in metal-organic frameworks (MOFs) can be accurately studied both experimentally and computationally, provided the proper tools are employed. Herein, we compare and contrast properties associated with guest binding by means of density functional theory (DFT) calculations using nine different functionals for the M(dobdc) (dobdc = 2,5-dioxido,1,4-benzenedicarboxylate) series, where M = Mg, Mn, Fe, Co, Ni, Cu, and Zn. Additionally, we perform Quantum Monte Carlo (QMC) calculations for one system to determine if this method can be used to assess the performance of DFT.

View Article and Find Full Text PDF