Otoliths (ear-stones) in the inner ears of vertebrates containing visible year zones are used extensively to determine fish age. Analysis of otoliths is a time-consuming and difficult task that requires the education of human experts. Human age estimates are inconsistent, as several readings by the same human expert might result in different ages assigned to the same otolith, in addition to an inherent bias between readers.
View Article and Find Full Text PDFAge-reading of fish otoliths (ear stones) is important for the sustainable management of fish resources. However, the procedure is challenging and requires experienced readers to carefully examine annual growth zones. In a recent study, convolutional neural networks (CNNs) have been demonstrated to perform reasonably well on automatically predicting fish age from otolith images.
View Article and Find Full Text PDFThe age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive and dependent on specialist expertise. Recent advances in machine learning have provided methods that have been remarkably successful in a variety of settings, with potential to automate analysis that previously required manual curation.
View Article and Find Full Text PDF