Tetradecylthioacetic acid (TTA) is a synthetic fatty acid with a sulfur substitution in the β-position. This modification renders TTA unable to undergo complete β-oxidation and increases its biological activity, including activation of peroxisome proliferator activated receptors (PPARs) with preference for PPARα. This study investigated the effects of TTA on lipid and lipoprotein metabolism in the intestine and liver of mice fed a high fat diet (HFD).
View Article and Find Full Text PDFTrends Endocrinol Metab
July 2017
The cellular uptake of free fatty acids (FFA) is followed by esterification to coenzyme A (CoA), generating fatty acyl-CoAs that are substrates for oxidation or incorporation into complex lipids. Acyl-CoA thioesterases (ACOTs) constitute a family of enzymes that hydrolyze fatty acyl-CoAs to form FFA and CoA. Although biochemically and biophysically well characterized, the metabolic functions of these enzymes remain incompletely understood.
View Article and Find Full Text PDFBioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T.
View Article and Find Full Text PDFBackground: Marine food is an important source of omega-3 fatty acids with beneficial health effects. Oils from marine organisms have different fatty acid composition and differ in their molecular composition. Fish oil (FO) has a high content of eicosapentaenoic and docosahexaenoic acids mainly esterified to triacylglycerols, while in krill oil (KO) these fatty acids are mainly esterified to phospholipids.
View Article and Find Full Text PDFThis study investigates the effects of salmon peptide fractions, generated using different enzymatic hydrolyzation methods, on hepatic lipid metabolism. Four groups of mice were fed a high-fat diet with 20% casein (control group) or 15% casein and 5% of peptide fractions (treatment groups E1, E2 and E4) for 6weeks. Weight gain was reduced in mice fed E1 and E4-diets compared to control, despite a similar feed intake.
View Article and Find Full Text PDFCrystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase.
View Article and Find Full Text PDFBackground: Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model.
View Article and Find Full Text PDFPeroxisomes are nearly ubiquitous organelles involved in a number of metabolic pathways that vary between organisms and tissues. A common metabolic function in mammals is the partial degradation of various (di)carboxylic acids via α- and β-oxidation. While only a small number of enzymes catalyze the reactions of β-oxidation, numerous auxiliary enzymes have been identified to be involved in uptake of fatty acids and cofactors required for β-oxidation, regulation of β-oxidation and transport of metabolites across the membrane.
View Article and Find Full Text PDFAcyl-CoA thioesterase (ACOT) activities are found in prokaryotes and in several compartments of eukaryotes where they hydrolyze a wide range of acyl-CoA substrates and thereby regulate intracellular acyl-CoA/CoA/fatty acid levels. ACOT9 is a mitochondrial ACOT with homologous genes found from bacteria to humans and in this study we have carried out an in-depth kinetic characterization of ACOT9 to determine its possible physiological function. ACOT9 showed unusual kinetic properties with activity peaks for short-, medium-, and saturated long-chain acyl-CoAs with highest V max with propionyl-CoA and (iso) butyryl-CoA while K cat/K m was highest with saturated long-chain acyl-CoAs.
View Article and Find Full Text PDFBile acids play multiple roles in the physiology of vertebrates; they facilitate lipid absorption, serve as signaling molecules to control carbohydrate and lipid metabolism, and provide a disposal route for cholesterol. Unexpectedly, the α-methylacyl-CoA racemase (Amacr) deficient mice, which are unable to complete the peroxisomal cleavage of C27-precursors to the mature C24-bile acids, are physiologically asymptomatic when maintained on a standard laboratory diet. The aim of this study was to uncover the underlying adaptive mechanism with special reference to cholesterol and bile acid metabolism that allows these mice to have a normal life span.
View Article and Find Full Text PDFThe importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approximately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, resulting in the production of amidated bile acids and fatty acids.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2009
The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes.
View Article and Find Full Text PDFCoenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated.
View Article and Find Full Text PDFPeroxisomes are single membrane bound organelles present in almost all eukaryotic cells, and to date have been shown to contain approximately 60 identified enzymes involved in various metabolic pathways, including the oxidation of a variety of lipids. These lipids include very long-chain fatty acids, methyl branched fatty acids, prostaglandins, bile-acid precursors and xenobiotics that are either beta-oxidized or alpha-oxidized in peroxisomes. The recent identification of several acyl-CoA thioesterases and acyltransferases in peroxisomes has revealed their various functions in acting as auxiliary enzymes in alpha- and beta-oxidation in this organelle.
View Article and Find Full Text PDFPeroxisomes metabolize a variety of lipids, acting as a chain-shortening system that produces acyl-CoAs of varying chain lengths, including acetyl-CoA and propionyl-CoA. It is, however, still largely unknown how beta-oxidation products exit peroxisomes and where they are further metabolized. Peroxisomes contain carnitine acetyltransferase (CRAT) and carnitine octanoyltransferase (CROT) that produce carnitine esters for transport out of peroxisomes, together with recently characterized acyl-CoA thioesterases (ACOTs) that produce free fatty acids.
View Article and Find Full Text PDFPhytanic acid and pristanic acid are derived from phytol, which enter the body via the diet. Phytanic acid contains a methyl group in position three and, therefore, cannot undergo beta-oxidation directly but instead must first undergo alpha-oxidation to pristanic acid, which then enters beta-oxidation. Both these pathways occur in peroxisomes, and in this study we have identified a novel peroxisomal acyl-CoA thioesterase named ACOT6, which we show is specifically involved in phytanic acid and pristanic acid metabolism.
View Article and Find Full Text PDFThe metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPARalpha). Fasting or treatment of mice with the PPARalpha agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively.
View Article and Find Full Text PDFAcyl-CoA thioesterases (ACOTs) catalyze the hydrolysis of acyl-CoAs to free fatty acids and coenzyme A. Recent studies have demonstrated that one gene named Acot7, reported to be mainly expressed in brain and testis, is transcribed in several different isoforms by alternative usage of first exons. Strongly decreased levels of ACOT7 activity and protein in both mitochondria and cytosol was reported in patients diagnosed with fatty acid oxidation defects, linking ACOT7 function to regulation of fatty acid oxidation in other tissues.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of protein expression of MTE-I and UCP3 or about MTE-I activity; thus, we investigated the effects of diabetes and treatment with a PPAR alpha agonist on these parameters. Rats were either made diabetic with streptozotocin (55 mg/kg ip) and maintained for 10-14 days or treated with the PPAR alpha agonist fenofibrate (300 mg/kg/day) for 4 weeks.
View Article and Find Full Text PDFA wide variety of endogenous carboxylic acids and xenobiotics are conjugated with amino acids, before excretion in urine or bile. The conjugation of carboxylic acids and bile acids with taurine and glycine has been widely characterized, and de novo synthesized bile acids are conjugated to either glycine or taurine in peroxisomes. Peroxisomes are also involved in the oxidation of several other lipid molecules, such as very long chain acyl-CoAs, branched chain acyl-CoAs, and prostaglandins.
View Article and Find Full Text PDFThe maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6).
View Article and Find Full Text PDFThere is now compelling evidence of mitochondrial dysfunction in motor neuron disease (MND), but the molecular basis of these abnormalities is unknown. It is also unclear whether the observed mitochondrial dysfunction plays a central role in disease pathogenesis, and if so, whether its amelioration might present therapeutic opportunities. We adopted a candidate generation approach using proteomics to screen for changes in mitochondrial protein expression in a well-validated cell-culture model of superoxide dismutase 1 (SOD1) related familial MND (fMND).
View Article and Find Full Text PDFDicarboxylic acids are formed by omega-oxidation of fatty acids in the endoplasmic reticulum and degraded as the CoA ester via beta-oxidation in peroxisomes. Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids, implying that acyl-CoA thioesterases (ACOTs), which hydrolyze CoA esters to the free acid and CoASH, are needed for the release of the free acids. Recent studies show that peroxisomes contain several acyl-CoA thioesterases with different functions.
View Article and Find Full Text PDFAcyl-CoA thioesterases, also known as acyl-CoA hydrolases, are a group of enzymes that hydrolyze CoA esters such as acyl-CoAs (saturated, unsaturated, branched-chain), bile acid-CoAs, CoA esters of prostaglandins, etc., to the corresponding free acid and CoA. However, there is significant confusion regarding the nomenclature of these genes.
View Article and Find Full Text PDF