Antimicrobials (e.g., antibiotics and biocides) are invaluable chemicals used to control microbes in numerous contexts.
View Article and Find Full Text PDFSignificance: Diffuse optical imaging (DOI) provides in vivo quantification of tissue chromophores such as oxy- and deoxyhemoglobin (HbO2 and HHb, respectively). These parameters have been shown to be useful for predicting neoadjuvant treatment response in breast cancer patients. However, most DOI devices designed for the breast are nonportable, making frequent longitudinal monitoring during treatment a challenge.
View Article and Find Full Text PDFObjective: Bone augmentation delays implant placement and increases risks due to additional surgeries. Implant systems compatible with reduced alveolar bone volume are required. To design, manufacture, and test a non-cylindrical dental implant system using piezotomes and custom-designed matching titanium mini-implants to address the needs of patients with missing teeth and narrow jawbone.
View Article and Find Full Text PDFPurpose: Loss of corneal endothelial cells (CECs) bears disastrous consequences for the patient, including corneal clouding and blindness. Corneal transplantation is currently the only therapy for severe corneal disorders. However, the worldwide shortages of corneal donor material generate a strong demand for personalized stem cell-based alternative therapies.
View Article and Find Full Text PDFThe rapid evolution of antibiotic resistance in bacterial pathogens is driving the development of innovative, rapid antibiotic susceptibility testing (AST) tools as a way to provide more targeted and timely antibiotic treatment. We have previously presented a stress-based microfluidic method for the rapid determination of antibiotic susceptibility in methicillin-susceptible (MSSA) and methicillin-resistant (MRSA). In this method, stress is used to potentiate the action of antibiotics, and cell death is measured as a proxy for susceptibility.
View Article and Find Full Text PDFA reduced channel height in microfluidic Lab-on-a-Chip (LOC) devices enables a reduction in the required volume of sample and reagents. LOC devices are most often manufactured by microstructuring a planar substrate and subsequently sealing it with a cover film. However, shallow chip designs, made from polymers, are sensitive to channel deformation during the sealing of the microfluidic device.
View Article and Find Full Text PDFOne of the main challenges in the diagnosis of infectious diseases is the need for rapid and accurate detection of the causative pathogen in any setting. Rapid diagnosis is key to avoiding the spread of the disease, to allow proper clinical decisions to be made in terms of patient treatment, and to mitigate the rise of drug-resistant pathogens. In the last decade, significant interest has been devoted to the development of point-of-care reverse transcription polymerase chain reaction (PCR) platforms for the detection of RNA-based viral pathogens.
View Article and Find Full Text PDFThe increased world-wide availability of point-of-care (POC) tests utilizing fingerstick blood has led to testing scenarios in which multiple separate fingersticks are performed during a single patient encounter, generating cumulative discomfort and reducing testing efficiency. We have developed a device capable of a) collection of up to 100 μL of fingerstick blood from a single fingerstick by capillary action, and b) dispensing this blood in variable increments set by the user. We tested the prototype device both in a controlled laboratory setting and in a fingerstick study involving naive device users, and found it to have accuracy and precision similar to a conventional pipettor.
View Article and Find Full Text PDFBacteremia is a life-threatening condition for which antibiotics must be prescribed within hours of clinical diagnosis. Since the current gold standard for bacteremia diagnosis is based on conventional methods developed in the mid-1800s-growth on agar or in broth-identification and susceptibility profiling for both Gram-positive and Gram-negative bacterial species requires at least 48-72 h. Recent advancements in accelerated phenotypic antibiotic susceptibility testing have centered on the microscopic growth analysis of small bacterial populations.
View Article and Find Full Text PDFWe present a new continuous-wave wearable diffuse optical probe aimed at investigating the hemodynamic response of locally advanced breast cancer patients during neoadjuvant chemotherapy infusions. The system consists of a flexible printed circuit board that supports an array of six dual wavelength surface-mount LED and photodiode pairs. The probe is encased in a soft silicone housing that conforms to natural breast shape.
View Article and Find Full Text PDFDue to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts.
View Article and Find Full Text PDFA strong natural selection for microbial antibiotic resistance has resulted from the extensive use and misuse of antibiotics. Though multiple factors are responsible for this crisis, the most significant factor - widespread prescription of broad-spectrum antibiotics - is largely driven by the fact that the standard process for determining antibiotic susceptibility includes a 1-2-day culture period, resulting in 48-72 h from patient sample to final determination. Clearly, disruptive approaches, rather than small incremental gains, are needed to address this issue.
View Article and Find Full Text PDFTraditional methods for identifying pathogens in bacteremic patients are slow (24-48+ h). This can lead to physicians making treatment decisions based on an incomplete diagnosis and potentially increasing the patient's mortality risk. To decrease time to diagnosis, we have developed a novel technology that can recover viable bacteria directly from whole blood and identify them in less than 7 h.
View Article and Find Full Text PDFThe dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components.
View Article and Find Full Text PDFIn this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.
View Article and Find Full Text PDFWe present a lab-on-a-chip and associated instrument for heterogeneous enzyme-linked immunosorbent assay (ELISA)-based detection of proteins from liquid samples. The system performs all necessary ELISA steps (starting from antigen incubation) in a quarter of the time required for corresponding plate-based protocols. We have previously described the instrument, which automates fluidic control via remote valve switching and detects fluorescence from reacted substrate, for use in a molecular diagnostics application.
View Article and Find Full Text PDFAppropriate care for bacteremic patients is dictated by the amount of time needed for an accurate diagnosis. However, the concentration of microbes in the blood is extremely low in these patients (1-100 CFU/mL), traditionally requiring growth (blood culture) or amplification (e.g.
View Article and Find Full Text PDFWe have developed a rapid microfluidic method for antibiotic susceptibility testing in a stress-based environment. Fluid is passed at high speeds over bacteria immobilized on the bottom of a microfluidic channel. In the presence of stress and antibiotic, susceptible strains of bacteria die rapidly.
View Article and Find Full Text PDFMany new and exciting portable HIV viral load testing technologies are emerging for use in global medicine. While the potential to provide fast, isothermal, and quantitative molecular diagnostic information to clinicians in the field will soon be a reality, many of these technologies lack a robust front end for sample clean up and nucleic acid preparation. Such a technology would enable many different downstream molecular assays.
View Article and Find Full Text PDFTo accurately diagnose microbial infections in blood, it is essential to recover as many microorganisms from a sample as possible. Unfortunately, recovering such microorganisms depends significantly on their adhesion to the surfaces of diagnostic devices. Consequently, we sought to minimize the adhesion of methicillin-sensitive (MSSA) to the surface of polypropylene- and acrylic-based bacteria concentration devices.
View Article and Find Full Text PDFA fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.
View Article and Find Full Text PDFThe emergence and spread of bacterial resistance to ever increasing classes of antibiotics intensifies the need for fast phenotype-based clinical tests for determining antibiotic susceptibility. Standard susceptibility testing relies on the passive observation of bacterial growth inhibition in the presence of antibiotics. In this paper, we present a novel microfluidic platform for antibiotic susceptibility testing based on stress-activation of biosynthetic pathways that are the primary targets of antibiotics.
View Article and Find Full Text PDFSample preparation for DNA and RNA assays is a prime candidate for laboratory automation. A novel, parallel processing device that performs the three separate liquid-handling functions necessary for such sample preparation-dispensing, pipetting, and pressurizing-is presented. The device comprises an array of fine nozzles connected by fluidic channels to automatically and precisely distribute flow between one source and an array of points.
View Article and Find Full Text PDFThe life science and healthcare communities have been redefining the importance of ribonucleic acid (RNA) through the study of small molecule RNA (in RNAi/siRNA technologies), micro RNA (in cancer research and stem cell research), and mRNA (gene expression analysis for biologic drug targets). Research in this field increasingly requires efficient and high-throughput isolation techniques for RNA. Currently, several commercial kits are available for isolating RNA from cells.
View Article and Find Full Text PDF