Publications by authors named "Alexis R Hernandez"

We study the effect of polarization in Axelrod's model of cultural dissemination. This is done through the introduction of a cultural feature that takes only two values, while the other features can present a larger number of possible traits. Our numerical results and mean-field approximations show that polarization reduces the characteristic phase transition of the original model to a finite-size effect, since at the thermodynamic limit only the ordered phase is present.

View Article and Find Full Text PDF

A recent work (Hernández, et al., 2018) introduced a networked voting rule supported by a trust-based social network, where indications of possible representatives were based on individuals opinions. Individual contributions went beyond a simple vote-counting and were based on proxy voting.

View Article and Find Full Text PDF

We introduce a general framework for exploring the problem of selecting a committee of representatives with the aim of studying a networked voting rule based on a decentralized large-scale platform, which can assure a strong accountability of the elected. The results of our simulations suggest that this algorithm-based approach is able to obtain a high representativeness for relatively small committees, performing even better than a classical voting rule based on a closed list of candidates. We show that a general relation between committee size and representatives exists in the form of an inverse square root law and that the normalized committee size approximately scales with the inverse of the community size, allowing the scalability to very large populations.

View Article and Find Full Text PDF

Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy).

View Article and Find Full Text PDF

In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot.

View Article and Find Full Text PDF

The nonlinear electronic transport properties of a ballistic Aharonov-Bohm ring are investigated. It is demonstrated how the electronic interaction breaks the phase rigidity in a two-probe mesoscopic device as the voltage bias is increased. The possibility of studying interference effects in the nonlinear regime is addressed.

View Article and Find Full Text PDF