Understanding the process of genetic adaptation in response to human-mediated ecological change will help elucidate the eco-evolutionary impacts of human activity. In the 1930s red imported fire ants (Solenopsis invicta) were accidently introduced to the Southeastern USA, where today they are both venomous predators and toxic prey to native eastern fence lizards (Sceloporus undulatus). Here, we investigate potential lizard adaptation to invasive fire ants by generating whole-genome sequences from 420 lizards across three populations: one with long exposure to fire ants, and two unexposed populations.
View Article and Find Full Text PDFAntibiotic-induced microbiome injury, defined as a reduction of ecological diversity and obligate anaerobe taxa, is associated with negative health outcomes in hospitalized patients, and healthy individuals who received antibiotics in the past are at higher risk for autoimmune diseases. No interventions are currently available that effectively target the microbial ecosystem in the gut to prevent this negative collateral damage of antibiotics. Here, we present the results from a single-center, randomized placebo-controlled trial involving 32 patients who received an oral, fermentation-derived postbiotic alongside oral antibiotic therapy for gastrointestinal (GI)-unrelated infections.
View Article and Find Full Text PDFAlthough protocols exist for the recovery of ancient DNA from land snail and marine bivalve shells, marine conch shells have yet to be studied from a paleogenomic perspective. We first present reference assemblies for both a 623.7 Mbp nuclear genome and a 15.
View Article and Find Full Text PDFNoninvasive sampling is an important development in population genetic monitoring of wild animals. Particularly, the collection of environmental DNA (eDNA) which can be collected without needing to encounter the target animal facilitates the genetic analysis of endangered species. One method that has been applied to these sample types is target capture and enrichment which overcomes the issue of high proportions of exogenous (nonhost) DNA from these lower quality samples.
View Article and Find Full Text PDFA genome-wide association study (GWAS) identifies regions of the genome that likely affect the variable state of a phenotype of interest. These regions can then be studied with population genetic methods to make inferences about the evolutionary history of the trait. There are increasing opportunities to use GWAS results-even from clinically motivated studies-for tests of classic anthropological hypotheses.
View Article and Find Full Text PDFNat Ecol Evol
February 2017
Due to our intensive subsistence and habitat-modification strategies-including broad-spectrum harvesting and predation, widespread landscape burning, settlement construction, and translocation of other species-humans have major roles as ecological actors who influence fundamental trophic interactions. Here we review how the long-term history of human-environment interaction has shaped the evolutionary biology of diverse non-human, non-domesticated species. Clear examples of anthropogenic effects on non-human morphological evolution have been documented in modern studies of substantial changes to body size or other major traits in terrestrial and aquatic vertebrates, invertebrates, and plants in response to selective human harvesting, urbanized habitats, and human-mediated translocation.
View Article and Find Full Text PDFThe Eurasian sympatry of Neandertals and anatomically modern humans - beginning at least 45,000 years ago and possibly lasting for more than 5000 years - has sparked immense anthropological interest into the factors that potentially contributed to Neandertal extinction. Among many different hypotheses, the "differential pathogen resistance" extinction model posits that Neandertals were disproportionately affected by exposure to novel infectious diseases that were transmitted during the period of spatiotemporal sympatry with modern humans. Comparisons of new archaic hominin paleogenome sequences with modern human genomes have confirmed a history of genetic admixture - and thus direct contact - between humans and Neandertals.
View Article and Find Full Text PDFWe have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event.
View Article and Find Full Text PDF