Publications by authors named "Alexis Onzo"

, causes up to 100% yield loss in maize production in Sub-Saharan Africa. Developing Striga-resistant maize cultivars could be a major component of integrated Striga management strategies. This paper presents a comprehensive overview of maize breeding activities related to Striga resistance and its management.

View Article and Find Full Text PDF

To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus gossypii. These fields also harboured the cassava apex-inhabiting predator Typhlodromalus aripo and either the leaf-inhabiting predator Amblydromalus manihoti or Euseius fustis.

View Article and Find Full Text PDF

The predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae, both introduced from Brazil for control of the cassava green mite (CGM) Mononychellus tanajoa, now co-occur in cassava fields in Benin. However, studies on interactions between these two natural enemies and how they might affect CGM biological control are lacking. We determined in screenhouse experiments the effects of single and combined releases of N.

View Article and Find Full Text PDF

In Benin, the tarsonemid mite Polyphagotarsonemus latus (Banks) (Prostigmata: Tarsonemidae) is a key pest of gboma eggplant Solanum macrocarpon (L.) (Solanales: Solanaceae), a leafy vegetable on which it causes considerable damage to the plants and substantial reduction in yield. Predatory mites in the family Phytoseiidae have been successfully used in the biological control of numerous agricultural pests worldwide.

View Article and Find Full Text PDF

It is well known that plant-inhabiting predators use herbivore-induced plant volatiles to locate herbivores being their prey. Much less known, however, is the phenomenon that genotypes of the same host plant species vary in the attractiveness of these induced chemical signals, whereas they also differ in characteristics that affect the predator's foraging success, such as leaf pubescence. In a series of two-choice experiments (using a Y-tube olfactometer) we determined the preference of Typhlodromalus aripo for pubescent versus glabrous cassava cultivars infested with the cassava green mite Mononychellus tanajoa and also the preference for cultivars within each of the two groups.

View Article and Find Full Text PDF

Most studies on ecological impact of solar ultraviolet (UV) radiation generally focus on plants. However, UV radiation can also affect organisms at other trophic levels. Protection against mortality induced by solar UV has, therefore, been hypothesized as one of the reasons why Typhlodromalus aripo hides in the apex of cassava plants during the day and comes out at night to prey on spider mites on leaves.

View Article and Find Full Text PDF

To determine the impact of an acarine predator guild on the abundance of a shared herbivorous prey and its principal exotic predator, a series of surveys were conducted in ca. 200 cassava fields in swamp and non-swamp areas in southwestern Benin, West Africa. For each field, the surveys provided data on the density of a pest arthropod, the cassava green mite Mononychellus tanajoa (Bondar), of an introduced and successfully established natural enemy, the apex-inhabiting predatory mite Typhlodromalus aripo DeLeon, and on occurrence of other predator species that inhabit the leaves and share the same prey.

View Article and Find Full Text PDF