Flexible high-voltage thin-film transistors (HVTFTs) operating at more than 1 kV are integrated with compliant dielectric elastomer actuators (DEA) to create a flexible array of 16 independent actuators. To allow for high-voltage operation, the HVTFT implements a zinc-tin oxide channel, a thick dielectric stack, and an offset gate. At a source-drain bias of 1 kV, the HVTFT has a 20 µA on-current at a gate voltage bias of 30 V.
View Article and Find Full Text PDFStudies of the real-time dynamics of embryonic development require a gentle embryo handling method, the possibility of long-term live imaging during the complete embryogenesis, as well as of parallelization providing a population's statistics, while keeping single embryo resolution. We describe an automated approach that fully accomplishes these requirements for embryos of Caenorhabditis elegans, one of the most employed model organisms in biomedical research. We developed a microfluidic platform which makes use of pure passive hydrodynamics to run on-chip worm cultures, from which we obtain synchronized embryo populations, and to immobilize these embryos in incubator microarrays for long-term high-resolution optical imaging.
View Article and Find Full Text PDF