Publications by authors named "Alexis K De-Haven-Brandon"

B-cell lymphoma 6 (BCL6) is a transcriptional repressor and oncogenic driver of diffuse large B-cell lymphoma (DLBCL). Here, we report the optimization of our previously reported tricyclic quinolinone series for the inhibition of BCL6. We sought to improve the cellular potency and exposure of the non-degrading isomer, , of our recently published degrader, .

View Article and Find Full Text PDF

The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader to , a highly potent probe suitable for sustained depletion of BCL6 . We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6.

View Article and Find Full Text PDF

Background: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers optimized a series of compounds to identify a potent and selective oral CHK1 inhibitor for preclinical development, showing effectiveness as both a chemotherapy enhancer and a standalone treatment.
  • The optimization process involved evaluating the compounds' cellular mechanisms to ensure selectivity, leading to the discovery of a highly selective ATP competitive inhibitor.
  • It was determined that changes in lipophilicity and basicity influenced both CHK1 potency and potential side effects on the hERG ion channel, resulting in a compound with favorable pharmacokinetic properties and low expected doses for human use.
View Article and Find Full Text PDF

CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1.

View Article and Find Full Text PDF

Inhibitors of checkpoint kinase 1 (CHK1) are of current interest as potential antitumor agents, but the most advanced inhibitor series reported to date are not orally bioavailable. A novel series of potent and orally bioavailable 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitrile CHK1 inhibitors was generated by hybridization of two lead scaffolds derived from fragment-based drug design and optimized for CHK1 potency and high selectivity using a cell-based assay cascade. Efficient in vivo pharmacokinetic assessment was used to identify compounds with prolonged exposure following oral dosing.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a new medicine called CCT244747 that can help fight tumors by blocking a protein called CHK1, which helps cancer cells recover from damage.
  • They tested this medicine on mice with a type of cancer called neuroblastoma and found that it worked really well on its own and even better with other cancer drugs.
  • The results showed that CCT244747 not only damaged cancer cells more but also made them die off faster, proving it could be a promising treatment for cancer in future studies.
View Article and Find Full Text PDF

Purpose: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component.

Experimental Design: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor.

View Article and Find Full Text PDF

Purpose: The effective treatment of ovarian cancer is hampered by the development of drug resistance, which may be mediated by members of the Bcl-2 family of apoptosis regulators. ABT-737 is a recently described inhibitor of members of this family. We investigated whether this compound could sensitize ovarian cancer cells to chemotherapeutic agents.

View Article and Find Full Text PDF

In this age of molecularly targeted drug discovery, robust techniques are required to measure pharmacodynamic (PD) responses in tumors so that drug exposures can be associated with their effects on molecular biomarkers and efficacy. Our aim was to develop a rapid screen to monitor PD responses within xenografted human tumors as an important step towards a clinically applicable technology. Currently there are various methods available to measure PD end points, including immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction, gene expression profiling, and western blotting.

View Article and Find Full Text PDF