Although resting-state functional magnetic resonance imaging (fMRI) studies have observed dynamically changing brain-wide networks of correlated activity, fMRI's dependence on hemodynamic signals makes results challenging to interpret. Meanwhile, emerging techniques for real-time recording of large populations of neurons have revealed compelling fluctuations in neuronal activity across the brain that are obscured by traditional trial averaging. To reconcile these observations, we use wide-field optical mapping to simultaneously record pan-cortical neuronal and hemodynamic activity in awake, spontaneously behaving mice.
View Article and Find Full Text PDFHistological examinations typically require the excision of tissue, followed by its fixation, slicing, staining, mounting and imaging, with timeframes ranging from minutes to days. This process may remove functional tissue, may miss abnormalities through under-sampling, prevents rapid decision-making, and increases costs. Here, we report the feasibility of microscopes based on swept confocally aligned planar excitation technology for the volumetric histological imaging of intact living tissue in real time.
View Article and Find Full Text PDFDiffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics.
View Article and Find Full Text PDF