The biopharmaceutical industry is under increased pressure to maximize efficiency, enhance quality compliance, and reduce the cost of drug substance manufacturing. Ways to reduce costs associated with manufacturing of complex biological molecules include maximizing efficiency of chromatography purification steps. For example, process analytical technology (PAT) tools can be employed to improve column resin life, prevent column operating failures, and decrease the time it takes to solve investigations of process deviations.
View Article and Find Full Text PDFArrays of subnanoliter wells (nanowells) provide a useful system to isolate single cells and analyze their secreted proteins. Two general approaches have emerged: one that uses open arrays and local capture of secreted proteins, and a second (called microengraving) that relies on closed arrays to capture secreted proteins on a solid substrate, which is subsequently removed from the array. However, the design and operating parameters for efficient capture from these two approaches to analyze single-cell secretion have not been extensively considered.
View Article and Find Full Text PDFUnprecedented access to the biology of single cells is now feasible, enabled by recent technological advancements that allow us to manipulate and measure sparse samples and achieve a new level of resolution in space and time. This review focuses on advances in tools to study single cells for specific areas of biology. We examine both mature and nascent techniques to study single cells at the genomics, transcriptomics, and proteomics level.
View Article and Find Full Text PDFRecent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment.
View Article and Find Full Text PDFSupported lipid bilayers are an important biomolecular tool for characterizing immunological synapses. Immobilized bilayers presenting tethered ligands on planar substrates have yielded both spatio-temporal and structural insights into how T cell receptors (TCRs) reorganize during the initial formation of synapses upon recognition of peptide antigens bound to major histocompatibility complex (MHC) molecules. The prototypical configuration of these assays, however, limits the extent to which the kinetics and structure of the supramolecular activation clusters of the synapse (that occur in seconds or minutes) can be related to subsequent complex cellular responses, such as cytokine secretion and proliferation, occurring over hours to days.
View Article and Find Full Text PDFBiotechnol Prog
February 2012
Malignant gliomas are aggressive forms of primary brain tumors characterized by a poor prognosis. The most successful treatment so far is the local implantation of polymer carriers (Gliadel® wafers) for the sustained release of carmustine. To improve the effectiveness of local drug treatment, new polymer carriers and pharmacological agents are currently being investigated.
View Article and Find Full Text PDFMethods Mol Biol
October 2011
Fc receptor signaling plays a fundamental role in immune responses. A plethora of Fc -receptors (e.g.
View Article and Find Full Text PDFThe roles of nonmuscle myosin II and cortical actin filaments in chromaffin granule exocytosis were studied by confocal fluorescence microscopy, amperometry, and cell-attached capacitance measurements. Fluorescence imaging indicated decreased mobility of granules near the plasma membrane following inhibition of myosin II function with blebbistatin. Slower fusion pore expansion rates and longer fusion pore lifetimes were observed after inhibition of actin polymerization using cytochalasin D.
View Article and Find Full Text PDFPatterned surfaces that present specific ligands in spatially defined arrays are used to examine structural linkages between clustered IgE receptors (IgE-Fc epsilonRI) and the cytoskeleton in rat basophilic leukemia (RBL) mast cells. We showed with fluorescence microscopy that cytoskeletal F-actin concentrates in the same regions as cell surface IgE-Fc epsilonRI that bind to the micrometer-size patterned ligands. However, the proteins mediating these cytoskeletal connections and their functional relevance were not known.
View Article and Find Full Text PDFAdvances in microfabrication and nanofabrication are opening new opportunities to investigate complicated questions of cell biology in ways not before possible. In particular, the spatial regulation of cellular processes can be examined by engineering the chemical and physical environment to which the cell responds. Lithographic methods and selective chemical modification schemes can provide biocompatible surfaces that control cellular interactions on the micron and submicron scales on which cells are organized.
View Article and Find Full Text PDF