Publications by authors named "Alexis J Marshall"

Quantifying the rate of thermal adaptation of soil microbial respiration is essential in determining potential for carbon cycle feedbacks under a warming climate. Uncertainty surrounding this topic stems in part from persistent methodological issues and difficulties isolating the interacting effects of changes in microbial community responses from changes in soil carbon availability. Here, we constructed a series of temperature response curves of microbial respiration (given unlimited substrate) using soils sampled from around New Zealand, including from a natural geothermal gradient, as a proxy for global warming.

View Article and Find Full Text PDF

Spatial and temporal variability in benthic flux denitrification efficiency occurs across Port Phillip Bay, Australia. Here, we assess the capacity for untargeted metatranscriptomics to resolve spatiotemporal differences in the microbial contribution to benthic nitrogen cycling. The most abundant sediment transcripts assembled were associated with the archaeal nitrifier Nitrosopumilus.

View Article and Find Full Text PDF

Here we describe the potential for sediment microbial nitrogen-cycling gene (DNA) and activity (RNA) abundances to spatially resolve coastal areas impacted by seasonal variability in external nutrient inputs. Three sites were chosen within a nitrogen-limited embayment, Port Phillip Bay (PPB), Australia that reflect variability in both proximity to external nutrient inputs and the dominant form of available nitrogen. At three sediment depths (0-1; 1-5; 5-10 cm) across a 2 year study key genes involved in nitrification (archaeal amoA and bacterial β-amoA), nitrite reduction (clade I nirS and cluster I nirK, archaeal nirK-a), anaerobic oxidation of ammonium (anammox 16S rRNA phylogenetic marker) and nitrogen fixation (nifH) were quantified.

View Article and Find Full Text PDF

The space-for-time substitution approach provides a valuable empirical assessment to infer temporal effects of disturbance from spatial gradients. Applied to predict the response of different ecosystems under current climate change scenarios, it remains poorly tested in microbial ecology studies, partly due to the trophic complexity of the ecosystems typically studied. The McMurdo Dry Valleys (MDV) of Antarctica represent a trophically simple polar desert projected to experience drastic changes in water availability under current climate change scenarios.

View Article and Find Full Text PDF

Climate change is driving dramatic variability in sea ice dynamics, a key driver in polar marine ecosystems. Projected changes in Antarctica suggest that regional warming will force dramatic shifts in sea ice thickness and persistence, altering sea ice-associated primary production and deposition to the seafloor. To improve our understanding of the impacts of sea ice change on benthic ecosystems, we directly compared the benthic microbial communities underlying first-year sea ice (FYI) and multi-year sea ice (MYI).

View Article and Find Full Text PDF