Comp Biochem Physiol C Toxicol Pharmacol
October 2022
Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2022
Crude oil and the constituent polycyclic aromatic hydrocarbons (PAHs) induce a consistent suite of sub-lethal effects in early life stage fishes. It has been suggested that 3-ring PAHs drive cardiotoxicity and that all other impacts are downstream consequences of these cardiac effects. However, recent studies have documented behavioral alterations that may not be linked to cardiotoxicity.
View Article and Find Full Text PDFThe 2010 Deepwater Horizon oil spill impacted over 2100 km of shoreline along the northern Gulf of Mexico, which coincided with the spawning season of many coastal species, including red drum (Sciaenops ocellatus). Red drum develop rapidly and are sensitive to crude oil exposure during the embryonic and larval periods. This study investigates the predictions from recent transcriptomic studies that cholesterol biosynthetic processes are impacted by oil exposure in fish early life stages.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
October 2021
Fishes exposed to crude oil have shown reduced sociability and poor habitat selection, which corresponded with increased predation risk. However, the contribution of oil-induced cardiorespiratory impairments to these findings is uncertain. This study explores the effect of oil exposure on predation risk in a model fish species, , across a suite of physiological and behavioral end points to elucidate the mechanisms through which any observed effects are manifested.
View Article and Find Full Text PDFCrude oil is a well-known toxicant that reduces cardiorespiratory performance in acutely exposed fishes. While toxic effects can manifest in death in severe cases, the ecological consequences of sub-lethal exposure remain uncertain. This study investigated the impact of crude oil exposure on long-term social competition, growth, and metabolic performance in a coastal species, the red drum (Sciaenops ocellatus).
View Article and Find Full Text PDFMany animal taxa live in groups to increase foraging and reproductive success and aid in predator avoidance. For fish, a large proportion of species spend all or part of their lives in groups, with group coordination playing an important role in the emergent benefits of group-living. Group cohesion can be altered by an array of factors, including exposure to toxic environmental contaminants.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
June 2019
Crude oil and its constituent chemicals are common environmental toxicants in aquatic environments worldwide, and have been the subject of intense research for decades. Importantly, aquatic environments are also the sites of numerous other environmental disturbances that can impact the endemic fauna. While there have been a number of attempts to explore the potential additive and synergistic effects of oil exposure and environmental stressors, many of these efforts have focused on the cumulative effects on typical toxicological endpoints (e.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) present in crude oil can cause global gene dysregulation and developmental impairment in fish. However, the mechanisms that alter gene regulation are not well understood. In this study, larval red drum ( Sciaenops ocellatus) were exposed to water accommodated fractions of source oil (6.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) present in crude oil have been shown to cause the dysregulation of genes important in eye development and function, as well as morphological abnormalities of the eye. However, it is not currently understood how these changes in gene expression are manifested as deficits in visual function. Embryonic red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus) were exposed to water accommodated fractions (WAFs) of weathered crude oil and assessed for visual function using an optomotor response assay in early life-stage larvae, with subsequent samples taken for histological analysis of the eyes.
View Article and Find Full Text PDFThe present study examined impacts of crude oil exposure on dyad competition in juvenile red drum. Following the 2010 Deepwater Horizon oil spill, it has become well established that oil exposure can constrain maximum metabolic rate, reduce aerobic scope and exercise performance in marine fish. Aerobic scope is one of the physiological characteristics that is a known determinant of dominance in fish social hierarchy formation.
View Article and Find Full Text PDFThe Gulf of Mexico was home to the Deepwater Horizon oil spill, and is also known to exhibit seasonal declines in oxygen availability. Oil exposure in fish is known to impact oxygen uptake through cardiac impairment, which raises questions about the additive effects of these two stressors. Here we explore this question on the Atlantic croaker using two measures of hypoxia tolerance: critical oxygen threshold (P), and time to loss of equilibrium (LOE).
View Article and Find Full Text PDF