Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer.
View Article and Find Full Text PDFDouble-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site.
View Article and Find Full Text PDFMany double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood.
View Article and Find Full Text PDFMany essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29.
View Article and Find Full Text PDFInterventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants.
View Article and Find Full Text PDFThere is an urgent need to develop effective interventions resistant to the evolving variants of SARS-CoV-2. Nanobodies (Nbs) are stable and cost-effective agents that can be delivered by novel aerosolization route to treat SARS-CoV-2 infections efficiently. However, it remains unknown if they possess broadly neutralizing activities against the prevalent circulating strains.
View Article and Find Full Text PDFThe packaging of DNA into preformed capsids is a critical step during herpesvirus infection. For herpes simplex virus, this process requires the products of seven viral genes: the terminase proteins pUL15, pUL28, and pUL33; the capsid vertex-specific component (CVSC) proteins pUL17 and pUL25; and the portal proteins pUL6 and pUL32. The pUL6 portal dodecamer is anchored at one vertex of the capsid by interactions with the adjacent triplexes as well as helical density attributed to the pUL17 and pUL25 subunits of the CVSC.
View Article and Find Full Text PDFThe long flexible tail tube of bacteriophage lambda connects its capsid to the tail tip. On infection, a DNA ejection signal is passed from the tip, along the tube to the capsid that triggers passage of the DNA down the tube and into the host bacterium. The tail tube is built from repeating units of the major tail protein, gpV, which has two distinctive domains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
The herpesvirus capsid assembles in the nucleus as an immature procapsid precursor built around viral scaffold proteins. The event that initiates procapsid maturation is unknown, but it is dependent upon activation of the VP24 internal protease. Scaffold cleavage triggers angularization of the shell and its decoration with the VP26 and pUL25 capsid-surface proteins.
View Article and Find Full Text PDFUnlabelled: Purpose/Aim: Elevated serum phosphate is one of the major factors contributing to vascular calcification. Studies suggested that extracellular vesicles released from vascular smooth muscle cells significantly contribute to the initiation and progression of this pathology. Recently, we have demonstrated that elevated phosphate stimulates release of extracellular vesicles from osteogenic cells at the initiation of the mineralization process.
View Article and Find Full Text PDFLarge icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages with double-stranded DNA genomes of at least 200,000 bp. We explored the mechanism leading to increased capsid and genome sizes by characterizing structures of several jumbophage capsids and the DNA packaged within them.
View Article and Find Full Text PDFThe herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA.
View Article and Find Full Text PDFBacteriophage capsids constitute icosahedral shells of exceptional stability that protect the viral genome. Many capsids display on their surface decoration proteins whose structure and function remain largely unknown. The decoration protein pb10 of phage T5 binds at the centre of the 120 hexamers formed by the major capsid protein.
View Article and Find Full Text PDFThe herpesvirus capsid is a complex protein assembly that includes hundreds of copies of four major subunits and lesser numbers of several minor proteins, all of which are essential for infectivity. Cryo-electron microscopy is uniquely suited for studying interactions that govern the assembly and function of such large functional complexes. Here we report two high-quality capsid structures, from human herpes simplex virus type 1 (HSV-1) and the animal pseudorabies virus (PRV), imaged inside intact virions at ~7-Å resolution.
View Article and Find Full Text PDFThe 90-nm-diameter capsid of coliphage T5 is organized with T=13 icosahedral geometry and encloses a double-stranded DNA genome that measures 121kbp. Its assembly follows a path similar to that of phage HK97 but yielding a larger structure that includes 775 subunits of the major head protein, 12 subunits of the portal protein and 120 subunits of the decoration protein. As for phage HK97, T5 encodes the scaffold function as an N-terminal extension (∆-domain) to the major head protein that is cleaved by the maturation protease after assembly of the initial prohead I form and prior to DNA packaging and capsid expansion.
View Article and Find Full Text PDFBacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified.
View Article and Find Full Text PDFCapsids of double-stranded DNA (dsDNA) bacteriophages initially assemble into compact procapsids, which undergo expansion upon the genome packaging. This shell remodeling results from a structural rearrangement of head protein subunits. It is a critical step in the capsid maturation pathway that yields final particles capable to withstand the huge internal pressure generated by the packed DNA.
View Article and Find Full Text PDFThe Siphoviridae coliphage T5 differs from other members of this family by the size of its genome (121 kbp) and by its large icosahedral capsid (90 nm), which is organized with T=13 geometry. T5 does not encode a separate scaffolding protein, but its head protein, pb8, contains a 159-residue aminoterminal scaffolding domain (Delta domain) that is the mature capsid. We have deciphered the early events of T5 shell assembly starting from purified pb8 with its Delta domain (pb8p).
View Article and Find Full Text PDFPigment epithelium-derived factor (PEDF) is a multifunctional protein with neurotrophic, anti-oxidative, and anti-inflammatory properties. It is also one of the most potent endogenous inhibitors of angiogenesis, playing an important role in restricting tumor growth, invasion, and metastasis. Studies show that PEDF binds to cell surface proteins, but little is known about how it exerts its effects.
View Article and Find Full Text PDFGreen fluorescent proteins (GFP) are widely used in biology for tracking purposes. Although expression of GFP is considered to be innocuous for the cells, deleterious effects have been reported. We recently demonstrated that expression of eGFP in muscle impairs its contractile properties (Agbulut, O.
View Article and Find Full Text PDFSoluble oligomers of the amyloid beta-protein (Abeta) are linked to Alzheimer's disease. Irrespective of the nature of the nucleus before fibril growth, dimers are essential species in Abeta assembly, but their transient character has precluded, thus far, high-resolution structure determination. We have investigated the effects of the point mutation A21G on Abeta dimers by performing high temperature all-atom molecular dynamics simulations of Abeta(40), Abeta(42), and their Flemish variants (A21G) starting from their fibrillar conformations.
View Article and Find Full Text PDFSerum response factor (SRF) is a MADS transcription factor that binds to the CArG box sequence of the serum response element (SRE). Through its binding to CArG sequences, SRF activates several muscle-specific genes as well as genes that respond to mitogens. The thermodynamic parameters of the interaction of core-SRF (the 124-245 fragment of serum response factor) with specific oligonucleotides from c-fos and desmin promoters, were determined by spectroscopy.
View Article and Find Full Text PDF