Publications by authors named "Alexis Dunkle"

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone. However, there remains little consensus on the mechanism(s) of response with this combination.

View Article and Find Full Text PDF

Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells.

View Article and Find Full Text PDF

Subunit vaccines are theoretically safe and easy to manufacture but require effective adjuvants and delivery systems to yield protective immunity, particularly at critical mucosal sites such as the lung. We investigated nanolipoprotein particles (NLPs) containing the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as a platform for intranasal vaccination against . Modified lipids enabled attachment of disparate spore and toxin protein antigens.

View Article and Find Full Text PDF

Bacterial spores produced by the are composed of concentric shells, each of which contributes to spore function. Spores from all species possess a cortex and coat, but spores from many species possess additional outer layers. The outermost layer of spores, the exosporium, is separated from the coat by a gap known as the interspace.

View Article and Find Full Text PDF

To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. We utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 and CD8 T cells in vitro compared to co-administration of free OVA and MPLA.

View Article and Find Full Text PDF

Nanoparticles hold great promise for the delivery of therapeutics, yet limitations remain with regards to the use of these nanosystems for efficient long-lasting targeted delivery of therapeutics, including imparting functionality to the platform, in vivo stability, drug entrapment efficiency and toxicity. To begin to address these limitations, we evaluated the functionality, stability, cytotoxicity, toxicity, immunogenicity and in vivo biodistribution of nanolipoprotein particles (NLPs), which are mimetics of naturally occurring high-density lipoproteins (HDLs). We found that a wide range of molecules could be reliably conjugated to the NLP, including proteins, single-stranded DNA, and small molecules.

View Article and Find Full Text PDF

Recent studies have demonstrated that therapies targeting the innate immune system have the potential to provide transient, non-specific protection from a variety of infectious organisms; however, the potential of enhancing the efficacy of such treatments using nano-scale delivery platforms requires more in depth evaluation. As such, we employed a nanolipoprotein (NLP) platform to enhance the efficacy of innate immune agonists. Here, we demonstrate that the synthetic Toll-like receptor (TLR) agonists monophosphoryl lipid A (MPLA) and CpG oligodeoxynucleotides (CpG) can be readily incorporated into NLPs.

View Article and Find Full Text PDF

The processes that regulate T cell memory generation are important for therapeutic design and the immune response to disease. However, what allows a subset of effector T cells to survive the contraction period to become memory cells is incompletely understood. The Bcl-2 family is critical for T cell survival, and Bcl-2 has been proposed to be important for the survival of memory cells.

View Article and Find Full Text PDF

Background: Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses.

Methodology/principal Findings: When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC).

View Article and Find Full Text PDF

Semi-invariant NKT cells are thymus-derived innate-like lymphocytes that modulate microbial and tumor immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learned regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood.

View Article and Find Full Text PDF

During the development and normal function of T lymphocytes, the cells are subject to several checkpoints at which they must "decide" to live or die. At these critical times and during homeostasis, the molecules that regulate the classical apoptotic pathways and survival pathways such as autophagy have critical roles in controlling this decision. Our laboratory has focused on the roles of apoptotic and autophagic proteins in T lymphocyte development and function.

View Article and Find Full Text PDF

T lymphocyte development and function are tightly regulated by the intrinsic death pathway through members of the Bcl-2 family. Genetic studies have demonstrated that the Bcl-2 family member Mcl-1 is an important anti-apoptotic protein in the development of multiple cell types including T lymphocytes. However, the expression pattern and anti-apoptotic roles of Mcl-1 in T lymphocytes at different developmental stages remain to be fully determined.

View Article and Find Full Text PDF