Publications by authors named "Alexis Chacon"

Article Synopsis
  • The study demonstrates a method to observe topological phase transitions using x-ray absorption spectroscopy in a Chern insulator, which is adjusted through second-order hopping.
  • It utilizes time-dynamics simulations with a laser-driven electron motion to create a realistic attosecond spectroscopy setup, involving a circularly polarized infrared pump pulse and an attosecond x-ray probe pulse.
  • The results reveal a laser-induced dichroism spectrum that clearly indicates the topological phase transition, linking it to the system's Berry structure and broadening the applications of attosecond absorption spectroscopy to topologically complex systems.
View Article and Find Full Text PDF

High-order harmonics (HOHs) spectroscopy is attracting the attention of the condensed matter community, mostly because the HOHs spectrum encode the material property. Topological materials are of interest for both basic research and advanced technologies because of their robust properties against dissipation and perturbations. Floquet engineering technique have been demonstrated to be a unique tool to manipulate topological phase.

View Article and Find Full Text PDF

High-order harmonics (HH) have drawn attention in the field of condensed matter physics mainly because of the capability of light to encode structural, dynamical, and topological information. In this paper, we address the fundamental question whether HH can map topological information in two-dimensional (2D) quantum materials by studying the interaction between topological materials and an elliptically polarized laser. We use the Haldane model for topological Chern insulators (CIs) and the Kane-Mele model for topological insulators (TIs).

View Article and Find Full Text PDF

Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route.

View Article and Find Full Text PDF

We report the observation of an anomalous nonlinear optical response of the prototypical three-dimensional topological insulator bismuth selenide through the process of high-order harmonic generation. We find that the generation efficiency increases as the laser polarization is changed from linear to elliptical, and it becomes maximum for circular polarization. With the aid of a microscopic theory and a detailed analysis of the measured spectra, we reveal that such anomalous enhancement encodes the characteristic topology of the band structure that originates from the interplay of strong spin-orbit coupling and time-reversal symmetry protection.

View Article and Find Full Text PDF

Nonlinear susceptibilities are key to ultrafast lightwave driven optoelectronics, allowing petahertz scaling manipulation of the signal. Recent experiments retrieved a 3rd order nonlinear susceptibility by comparing the nonlinear response induced by a strong laser field to a linear response induced by the otherwise identical weak field. The highly nonlinear nature of high harmonic generation (HHG) has the potential to extract even higher order nonlinear susceptibility terms.

View Article and Find Full Text PDF

This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA).

View Article and Find Full Text PDF

We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process.

View Article and Find Full Text PDF