Short peptide-based supramolecular hydrogels appeared as highly interesting materials for applications in many fields. The optimization of their properties relies mainly on the design of a suitable hydrogelator through an empirical trial-and-error strategy based on the synthesis of various types of peptides. This approach is in part due to the lack of prior structural knowledge of the molecular architecture of the various families of nanofibers.
View Article and Find Full Text PDFComposite hydrogels composed of low-molecular-weight peptide self-assemblies and polysaccharides are gaining great interest as new types of biomaterials. Interactions between polysaccharides and peptide self-assemblies are well reported, but a molecular picture of their impact on the resulting material is still missing. Using the phosphorylated tripeptide precursor Fmoc-FFY (Fmoc, fluorenylmethyloxycarbonyl; F, phenylalanine; Y, tyrosine; , phosphate group), we investigated how hyaluronic acid (HA) influences the enzyme-assisted self-assembly of Fmoc-FFY generated in situ in the presence of alkaline phosphatase (AP).
View Article and Find Full Text PDFNature uses systems of high complexity coordinated by the precise spatial and temporal control of associated processes, working from the molecular to the macroscopic scale. This living organization is mainly ensured by enzymatic actions. Herein, we review the concept of Localized Enzyme-Assisted Self-Assembly (LEASA).
View Article and Find Full Text PDFHydrogel coating is highly suitable in biomaterial design. It provides biocompatibility and avoids protein adsorption leading to inflammation and rejection of implants. Moreover, hydrogels can be loaded with biologically active compounds.
View Article and Find Full Text PDF