Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge.
View Article and Find Full Text PDFIn clinical situations, peripheral blood accessible CD3CD4CXCR5 T-follicular helper (T) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of T cells in peripheral blood versus tonsils, CD3CD4CD45RACXCR5 cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry.
View Article and Find Full Text PDFMesoporous silica nanoparticles were synthesized using a microemulsion-assisted sol-gel method, and calcium, gallium or a combination of both, were used as dopants. The influence of these metallic ions on the physicochemical properties of the nanoparticles was investigated by scanning and transmission electron microscopy, as well as N adsorption-desorption methods. The presence of calcium had a significant impact on the morphology and textural features of the nanoparticles.
View Article and Find Full Text PDFObjectives: We investigated the effect of inspiratory muscle training (IMT) on inspiratory muscle strength, functional capacity and respiratory muscle kinematics during exercise in healthy older adults.
Methods: 24 adults were randomised into an IMT or SHAM-IMT group. Both groups performed 30 breaths, twice daily, for 8 weeks, at intensities of ∼50 % maximal inspiratory pressure (PImax; IMT) or <15 % PImax (SHAM-IMT).
Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI).
Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features.
Sol-gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here, we report the synthesis of a series of binary BO-CaO borate BGs (CaO ranging from 50 to 90 mol%) using a sol-gel-based method. The influence of CaO content in BO-CaO borate BG on morphology, structure and ion release behavior was investigated in detail.
View Article and Find Full Text PDFOne of the main challenges in improving the efficacy of conventional chemotherapeutic drugs is that they do not reach the cancer cells at sufficiently high doses while at the same time affecting healthy tissue and causing significant side effects and suffering in cancer patients. To overcome this deficiency, magnetic nanoparticles as transporter systems have emerged as a promising approach to achieve more specific tumour targeting. Drug-loaded magnetic nanoparticles can be directed to the target tissue by applying an external magnetic field.
View Article and Find Full Text PDFBackground: Whey protein isolate (WPI) is a by-product from the dairy industry, whose main component is β-lactoglobulin. Upon heating, WPI forms a hydrogel which can both support controlled drug delivery and enhance the proliferation and osteogenic differentiation of bone-forming cells. This study makes a novel contribution by evaluating the ability of WPI hydrogels to support the growth of endothelial cells, which are essential for vascularization, which in turn is a pre-requisite for bone regeneration.
View Article and Find Full Text PDFThe amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib.
View Article and Find Full Text PDFBackground: Immunotherapy of cancer is an emerging field with the potential to improve long-term survival. Thus far, adoptive transfer of tumor-specific T cells represents an effective treatment option for tumors of the hematological system such as lymphoma, leukemia or myeloma. However, in solid tumors, treatment efficacy is low owing to the immunosuppressive microenvironment, on-target/off-tumor toxicity, limited extravasation out of the blood vessel, or ineffective trafficking of T cells into the tumor region.
View Article and Find Full Text PDFNanoparticle-based therapeutics are being clinically translated for treating cancer. Even when thought to be biocompatible, nanoparticles are being increasingly identified as altering cell regulation and homeostasis. Antioxidant pathways are important for maintaining cell redox homeostasis and play important roles by maintaining ROS levels within tolerable ranges.
View Article and Find Full Text PDFDendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1.
View Article and Find Full Text PDFPurpose: Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like . Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast.
View Article and Find Full Text PDFImmune cell therapies, such as adoptive T cell therapies, are an innovative and powerful treatment option for previously non-treatable diseases. Although immune cell therapies are thought to be very specific, there is still the danger of developing severe to life-threatening side effects due to the unspecific distribution of the cells throughout the body (on-target/off-tumor effects). A possible solution for the reduction of these side effects and the improvement of tumor infiltration is the specific targeting of the effector cells (e.
View Article and Find Full Text PDFIntroduction: One of the major challenges in the clinical translation of nanoparticles is the development of formulations combining favorable efficacy and optimal safety. In the past, iron oxide nanoparticles have been introduced as an alternative for gadolinium-containing contrast agents; however, candidates available at the time were not free from adverse effects.
Methods: Following the development of a potent iron oxide-based contrast agent SPION, we now performed a systematic comparison of this formulation with the conventional contrast agent ferucarbotran and with ferumoxytol, taking into consideration their physicochemical characteristics, bio- and hemocompatibility in vitro and in vivo, as well as their liver imaging properties in rats.
Appl Microbiol Biotechnol
May 2023
Pandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment.
View Article and Find Full Text PDFThis study aimed to develop a suitable hydrogel-based 3D platform to support long-term culture of primary endothelial cells (ECs) and fibroblasts. Two hydrogel systems based on allyl-modified gelatin (gelAGE), G and G, were cross-linked via thiol-ene click reaction with a four-arm thiolated polyethylene glycol (PEG-4-SH). Compared to G, the G hydrogel was characterized by the lower polymer content and cross-linking density with a softer matrix and homogeneous and open porosity.
View Article and Find Full Text PDF