Stable isotope ratios, carbon (δC) and nitrogen (δN), and fatty acids validated the trophic connection between farmed fish in a commercial nearshore fish farm and sea cucumbers in the Mediterranean Sea. This dual tracer approach evaluated organic matter transfer in integrated multi-trophic aquaculture (IMTA) and the ability of sea cucumbers to incorporate fish farm waste (fish faeces and uneaten artificial fish feed) into their tissue. Between October 2018 and September 2019, Holothuria (Roweothuria) poli Delle Chiaje, 1824, co-cultured at IMTA sites directly below one of the commercial fish cage , at 10 m and 25 m from the selected fish cage, and at two reference sites over 800 m from the fish farm.
View Article and Find Full Text PDFDespite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components.
View Article and Find Full Text PDFWe are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high CO. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO areas may be useful to inform our understanding of their adaptive significance.
View Article and Find Full Text PDFSpecies distributions and ecology can often be explained by their physiological sensitivity to environmental conditions. Whilst we have a relatively good understanding of how these are shaped by temperature, for other emerging drivers, such as PCO2 we know relatively little. The marine polychaete Sabella spallanzanii increases its metabolic rate when exposed to high PCO2 conditions and remains absent from the CO2 vent of Ischia.
View Article and Find Full Text PDFSome marine diatoms negatively affect the reproduction of dominant zooplankton grazers such as copepods, thus compromising the transfer of energy through the marine food chains. In this paper, the metabolic mechanism that leads to diatom-induced toxicity is investigated in three bloom-forming microalgae. We show that copepod dysfunctions can be induced by highly reactive oxygen species (hROS) and a blended mixture of diatom products, including fatty acid hydroperoxides (FAHs); these compounds display teratogenic and proapoptotic properties.
View Article and Find Full Text PDF