Publications by authors named "Alexey Yushkin"

The separation of used engine oil (UEO) with an ultrafiltration (UF) membrane made of commercial copolymer of poly(acrylonitrile-co-methyl acrylate) (P(AN-co-MA)) has been investigated. The P(AN-co-MA) sample was characterized by using FTIR spectroscopy, C NMR spectroscopy, and XRD. The UF membrane with a mean pore size of 23 nm was fabricated by using of non-solvent-induced phase separation method-the casting solution of 13 wt.

View Article and Find Full Text PDF

In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes.

View Article and Find Full Text PDF

A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent at elevated temperatures, followed by its cooling and further extraction of organic solvent, resulting in the formation of the porous membrane. In this work, we used commercial UHMWPE film (thickness 155 μm) and o-xylene as a solvent.

View Article and Find Full Text PDF

Poly-(4,4'-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem.

View Article and Find Full Text PDF

In this work, perspective polymeric materials were developed for membrane contactor applications, e.g., for the dissolved oxygen removal from amine CO capture solvents.

View Article and Find Full Text PDF

For the first time, the presence of acetone in the casting solutions of polyacrylonitrile (PAN) in dimethylsulfoxide or N-methyl-2-pyrrolidone was studied with regards to thermodynamical aspects of phase separation of polymeric solutions induced by contact with non-solvent (water), formation and performance of porous membranes of ultrafiltration range. The positions of the liquid equilibrium binodals on the phase diagrams of these three-component and pseudo-three-component mixtures were determined. For PAN-N-methyl-2-pyrrolidone-water glass transition curve on a ternary phase diagram was plotted experimentally for the first time.

View Article and Find Full Text PDF

For the first time, a systematic study was carried out of the replacement of the low-volatility solvents N-methyl-2-pyrrolidone (NMP) or dimethylsulfoxide (DMSO) with the high-volatility solvent acetone in the casting solution of polyacrylonitrile (PAN). The effect of acetone's presence in the casting solution on the performance of ultrafiltration membranes fabricated via vapor-induced phase separation (VIPS) was investigated. It was possible to replace 40% of NMP and 50% of DMSO with acetone, which resulted in the reduction of the casting solution viscosity from 70.

View Article and Find Full Text PDF

Nowadays, nanofiltration is widely used for water treatment due to its advantages, such as energy-saving, sustainability, high efficiency, and compact equipment. In the present work, novel nanofiltration membranes based on the polymer of intrinsic microporosity PIM-1 modified by metal-organic frameworks (MOFs)-MIL-140A and MIL-125-were developed to increase nanofiltration efficiency for the removal of heavy metal ions and dyes. The structural and physicochemical properties of the developed PIM-1 and PIM-1/MOFs membranes were studied by the spectroscopic technique (FTIR), microscopic methods (SEM and AFM), and contact angle measurement.

View Article and Find Full Text PDF

In this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) layer of polyamic-acid (PAA) in N-methyl-2-pyrrolidone (NMP) by using water as non-solvent was considered. It was shown that polymer films formed within the "limited" layer of polymer solution showed a good agreement with the morphology of corresponded asymmetric flat-sheet membranes even in the case of three-component casting solution (PAA/NMP/EtOH).

View Article and Find Full Text PDF

This work was focused on the study of hypochlorite treatment on the pore size distribution of membranes. To this end, ultrafiltration membranes from a polysulfone/polyvinylpyrrolidone blend with a sponge-like structure were fabricated and exposed to hypochlorite solutions with different active chlorine concentrations for 4 h at ambient temperature. Liquid-liquid displacement and scanning electron microscopy were employed to study the limiting and surface pores, respectively.

View Article and Find Full Text PDF