We develop a nonlinear theory of the electronic transport in superconductors in the framework of the time-dependent Ginzburg-Landau (TDGL) equation. We utilize self-consistent Gaussian approximation and reveal the conditions under which the current-voltage V(I) dependence (I-V characteristics) acquires an S-shape form leading to switching instabilities. We demonstrate that in two-dimensions the emergence of such an instability is a hallmark of the Berezinskii-Kosterlitz-Thouless (BKT) transition that we have detected by transport measurements of titanium nitride (TiN) films.
View Article and Find Full Text PDFThree decades after the prediction of charge-vortex duality in the critical vicinity of the two-dimensional superconductor-insulator transition (SIT), one of the fundamental implications of this duality-the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that should occur on the insulating side of the SIT-has remained unobserved. The dual picture of the process points to the existence of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation of the charge BKT transition on the insulating side of the SIT in 10 nm thick NbTiN films, identified by the BKT critical behavior of the temperature and magnetic field dependent resistance, and map out the magnetic-field dependence of the critical temperature of the charge BKT transition.
View Article and Find Full Text PDFA reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior.
View Article and Find Full Text PDF