Publications by authors named "Alexey Y Ganin"

Sustainable batteries are key for powering electronic devices of the future, with aqueous zinc-ion batteries (AZIBs) standing out for their use of abundant, readily available elements, and safer production processes. Among the various electrode materials studied for AZIBs, the Chevrel Phase, MoS has shown promise due to its open framework, but issues with zinc ion trapping have limited its practical application. In this work, we employed computational methods to investigate the insertion-deinsertion mechanism in a series of isostructural MoSSe ( = 0-8) solid solutions as materials that could balance the gravimetric capacity and reversible cycling for AZIBs.

View Article and Find Full Text PDF

Single-layer two-dimensional (2D) nanomaterials exhibit physical and chemical properties which can be dynamically modulated through out-of-plane deformations. Existing methods rely on intricate micromechanical manipulations (., poking, bending, rumpling), hindering their widespread technological implementation.

View Article and Find Full Text PDF

Proton exchange membrane (PEM) water electrolyzers are critical enablers for sustainable green hydrogen production due to their high efficiency. However, nonplatinum catalysts are rarely evaluated under actual electrolyzer operating conditions, limiting knowledge of their feasibility for H production at scale. In this work, metallic 1T'-MoTe films were synthesized on carbon cloth supports via chemical vapor deposition and tested as cathodes in PEM electrolysis.

View Article and Find Full Text PDF

Purification of valuable engineered proteins and enzymes can be laborious, costly, and generating large amount of chemical waste. Whilst enzyme immobilization can enhance recycling and reuse of enzymes, conventional methods for immobilizing engineered enzymes from purified samples are also inefficient with multiple-step protocols, regarding both the carrier preparation and enzyme binding. Nickel ferrite magnetic nanoparticles (NiFeO MNPs) offer distinct advantages in both purification and immobilization of enzymes.

View Article and Find Full Text PDF

Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites.

View Article and Find Full Text PDF

Molecular metal chalcogenides have attracted great attention as electrocatalysts for the hydrogen evolution reaction (HER). However, efficient utilisation of the active sites and catalytic performance modulation has been challenging. Here we explore the design of immobilized molecular molybdenum polyselenides [MoOS(Se)(Se)] that exhibit efficient hydrogen evolution at low overpotential and stability over 1000 cycles.

View Article and Find Full Text PDF

Aqueous solutions of polyoxometalates (POMs) have been shown to have potential as high-capacity energy storage materials due to their potential for multi-electron redox processes, yet the mechanism of reduction and practical limits are currently unknown. Herein, we explore the mechanism of multi-electron redox processes that allow the highly reduced POM clusters of the form {MO} to absorb electrons in aqueous solution, focusing mechanistically on the Wells-Dawson structure X[PWO], which comprises 18 metal centers and can uptake up to 18 electrons reversibly ( = 18) per cluster in aqueous solution when the countercations are . This unconventional redox activity is rationalized by density functional theory, molecular dynamics simulations, UV-vis, electron paramagnetic resonance spectroscopy, and small-angle X-ray scattering spectra.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) has become a global concern as many bacterial species have developed resistance to commonly prescribed antibiotics, making them ineffective to treatments. One type of antibiotics, gallium(III) compounds, stands out as possible candidates due to their unique "Trojan horse" mechanism to tackle bacterial growth, by substituting iron(III) in the metabolic cycles of bacteria. In this study, we tested three polysaccharides (carboxymethyl cellulose (CMC), alginate, and pectin) as the binding and delivery agent for gallium on three bacteria (, and ) with a potential bioresponsive delivery mode.

View Article and Find Full Text PDF

Two-dimensional (2D) transition-metal dichalcogenides have become promising candidates for surface-enhanced Raman spectroscopy (SERS), but currently very few examples of detection of relevant molecules are available. Herein, we show the detection of the lipophilic disease marker β-sitosterol on few-layered MoTe films. The chemical vapor deposition (CVD)-grown films are capable of nanomolar detection, exceeding the performance of alternative noble-metal surfaces.

View Article and Find Full Text PDF

Food demand due to the growing global population has been stretching the agriculture sector to the limit. This demands the cultivation of plants in shrinking land areas which makes the search for highly effective systems for plant nutrition and pest control important. In this context, the application of nanoparticles (NPs) in agriculture can have a transformative effect on food production techniques as it can enable the delivery of bioactive agents (including growth factors, pesticides, and fungicides) directly to plants.

View Article and Find Full Text PDF

There has been substantial interest in research aimed at conductive carbon-based supports since the discovery that the electrical stimulus can have dramatic effect on cell behavior. Among these carbon-aerogels decorated with biocompatible polymers were suggested as future materials for tissue engineering. However, high reaction temperatures required for the synthesis of the aerogels tend to impair the stability of the polymeric networks.

View Article and Find Full Text PDF

The electrochemical generation of hydrogen is a key enabling technology for the production of sustainable fuels. Transition metal chalcogenides show considerable promise as catalysts for this reaction, but to date there are very few reports of tellurides in this context, and none of these transition metal telluride catalysts are especially active. Here, we show that the catalytic performance of metallic 1T'-MoTe is improved dramatically when the electrode is held at cathodic bias.

View Article and Find Full Text PDF

The production of hydrogen through water splitting using earth-abundant metal catalysts is a promising pathway for converting solar energy into chemical fuels. However, existing approaches for fine stoichiometric control, structural and catalytic modification of materials by appropriate choice of earth abundant elements are either limited or challenging. Here we explore the tuning of redox active immobilised molecular metal-chalcoxide electrocatalysts by controlling the chalcogen or metal stoichiometry and explore critical aspects of the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

We report on optimisation of the environmental stability and high temperature operation of surface transfer doping in hydrogen-terminated diamond using MoO and VO surface acceptor layers. In-situ annealing of the hydrogenated diamond surface at 400 °C was found to be crucial to enhance long-term doping stability. High temperature sheet resistance measurements up to 300 °C were performed to examine doping thermal stability.

View Article and Find Full Text PDF

Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T c is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C60 (3-) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller-active and itinerant electrons that connects the insulating and superconducting states of fullerides.

View Article and Find Full Text PDF

A solution chemistry synthetic route yields Cs(3)C(60) with a face-centred cubic structure. The described method uses well-established Schlenk techniques and THF as a solvent. The controlled addition of an organo-metallic salt reducing agent prevents the formation of C(60)(4-) salts.

View Article and Find Full Text PDF

The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.

View Article and Find Full Text PDF

The 'expanded fulleride' Cs(3)C(60) is an antiferromagnetic insulator in its normal state and becomes a molecular superconductor with T(c) as high as 38 K under pressure. There is mounting evidence that superconductivity is not of the conventional BCS type and electron-electron interactions are essential for its explanation. Here we present evidence for the dynamic Jahn-Teller effect as the source of the dramatic change in electronic structure occurring during the transition from the metallic to the localized state.

View Article and Find Full Text PDF

The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions.

View Article and Find Full Text PDF

The body-centered cubic A15-structured cesium fulleride Cs3C60 is not superconducting at ambient pressure and is free from disorder, unlike the well-studied face-centered cubic A3C60 alkali metal fulleride superconductors. We found that in Cs3C60, where the molecular valences are precisely assigned, the superconducting state at 38 kelvin emerges directly from a localized electron antiferromagnetic insulating state with the application of pressure. This transition maintains the threefold degeneracy of the active orbitals in both competing electronic states; it is thus a purely electronic transition to a superconducting state, with a dependence of the transition temperature on pressure-induced changes of anion packing density that is not explicable by Bardeen-Cooper-Schrieffer (BCS) theory.

View Article and Find Full Text PDF

C(60)-based solids are archetypal molecular superconductors with transition temperatures (Tc) as high as 33 K (refs 2-4). Tc of face-centred-cubic (f.c.

View Article and Find Full Text PDF

Substitution of the pillaring ligand in the homochiral open-framework [Ni(2)(L-asp)(2)(bipy)] by extended bipy-type ligands leads to a family of layer-structured, homochiral metal-organic frameworks. The 1D channel topology can be modified by the nature of the organic linker, with shape, cross-section and the chemical functionality tuneable. In addition, the volume of these channels can be increased by up to 36 % compared to the parent [Ni(2)(L-asp)(2)(bipy)].

View Article and Find Full Text PDF