Femtosecond inscription of fiber Bragg gratings (FBGs) in each core of a cladding-pumped seven-core Yb-doped fiber enables efficient (≈70%) 1064-nm lasing in a robust all-fiber scheme with ≈33 W power, nearly the same for uncoupled and coupled cores. However, the output spectrum is quite different: without coupling, seven individual lines corresponding to the in-core FBG reflection spectra sum up into a broad (0.22 nm) total spectrum, whereas the multiline spectrum collapses into a single narrow line at strong coupling.
View Article and Find Full Text PDFLaser interstitial thermal therapy (LITT) is a minimally invasive procedure used to treat a lesion through light irradiation and consequent temperature increase. Magnetic resonance thermometry imaging (MRTI) provides a multidimensional measurement of the temperature inside the target, thus enabling accurate monitoring of the damaged zone during the procedure. In proton resonance frequency shift-based thermometry, artifacts in the images may strongly interfere with the estimated temperature maps.
View Article and Find Full Text PDFWe present experimental results on the reconstruction of the 2D temperature field on the surface of a 250 × 250 mm sensor panel based on the distributed frequency shift measured by an optical backscatter reflectometer. A linear regression and a feed-forward neural network algorithm, trained by varying the temperature field and capturing thermal images of the panel, are used for the reconstruction. In this approach, we do not use any information about the exact trajectory of the fiber, material properties of the sensor panel, and a temperature sensitivity coefficient of the fiber.
View Article and Find Full Text PDFAn all-fiber 4-core Yb-doped laser with a cavity formed by fiber Bragg gratings directly inscribed in each core with femtosecond laser pulses and 4% Fresnel reflection from the output fiber end face is demonstrated. It has been shown that the diameter of the active fiber winding significantly affects the power distribution between the cores, since it affects both the pump power distribution and the cross-coupling between the cores. In particular, with an active fiber winding diameter of 21 cm, the cores behave independently, and the power is distributed almost evenly over all cores.
View Article and Find Full Text PDFMultimode fibres provide a promising platform for boosting the capacity of fibre links and the output power of fibre lasers. The complex spatiotemporal dynamics of multimode beams may be controlled in spatial and temporal domains via the interplay of nonlinear, dispersive and dissipative effects. Raman nonlinearity induces beam cleanup in long graded-index fibres within a laser cavity, even for CW Stokes beams pumped by highly-multimode laser diodes (LDs).
View Article and Find Full Text PDFIn this paper, we demonstrate the application of deep neural networks (DNNs) for processing the reflectance spectrum from a fiberoptic temperature sensor composed of densely inscribed fiber bragg gratings (FBG). Such sensors are commonly avoided in practice since close arrangement of short FBGs results in distortion of the spectrum caused by mutual interference between gratings. In our work the temperature sensor contained 50 FBGs with the length of 0.
View Article and Find Full Text PDFThe power scaling on all-fiberized Raman fiber oscillator with brightness enhancement (BE) based on multimode graded-index (GRIN) fiber is demonstrated. Thanks to beam cleanup of GRIN fiber itself and single-mode selection properties of the fiber Bragg gratings inscribed in the center of GRIN fiber, the efficient BE is realized. For the laser cavity with single OC FBG, continuous-wave power of 334 W with an M value of 2.
View Article and Find Full Text PDFLaser ablation (LA) of cancer is a minimally invasive technique based on targeted heat release. Controlling tissue temperature during LA is crucial to achieve the desired therapeutic effect in the organs while preserving the healthy tissue around. Here, we report the design and implementation of a real-time monitoring system performing closed-loop temperature control, based on fiber Bragg grating (FBG) spatial measurements.
View Article and Find Full Text PDFThe increasing recognition of minimally invasive thermal treatment of tumors motivate the development of accurate thermometry approaches for guaranteeing the therapeutic efficacy and safety. Magnetic Resonance Thermometry Imaging (MRTI) is nowadays considered the gold-standard in thermometry for tumor thermal therapy, and assessment of its performances is required for clinical applications. This study evaluates the accuracy of fast MRTI on a synthetic phantom, using dense ultra-short Fiber Bragg Grating (FBG) array, as a reference.
View Article and Find Full Text PDFSpecially designed composite heavily Er-doped fiber in combination with unique point-by-point inscription technology by femtosecond pulses at 1,026 nm enables formation of distributed-feedback (DFB) laser with ultra-short cavity length of 5.3 mm whose parameters are comparable and even better than those for conventional Er-doped fiber DFB lasers having much longer cavity. The composite fiber was fabricated by melting rare-earth doped phosphate glass in silica tube.
View Article and Find Full Text PDFThe paper presents a novel three-dimensional quasi-continuous shape sensor based on an FBG array inscribed by femtosecond laser pulses into a 7-core optical fiber with a polyimide protective coating. The measured bending sensitivity of individual FBGs ranges from 0.046 nm/m to 0.
View Article and Find Full Text PDFIn this paper, we present a new method of point-by-point femtosecond inscription of fiber Bragg gratings (FBG) arrays of different configurations in a 7-core spun optical fiber. The possibility of FBGs inscription with predefined periods in individual fiber cores allowed us to realize: 1) longitudinal FBG arrays with identical or variable resonant wavelengths in all side cores, 2) longitudinal FBG arrays inscribed only in the central or in the selected side core, and 3) an FBG array in a transverse cross section of a fiber consisting of an FBG inscribed in the central and three side cores. Based on the proposed method, by enabling the inscription through the acrylate protective coating of the fiber, a vector bend sensor has been created.
View Article and Find Full Text PDFRaman lasing in a graded-index fiber (GIF) attracts now great deal of attention due to the opportunity to convert high-power multimode laser diode radiation into the Stokes wave with beam quality improvement based on the Raman clean-up effect. Here we report on the cascaded Raman generation of the 2nd Stokes order in the 1.1-km long GIF with 100-μm core directly pumped by 915-nm diodes.
View Article and Find Full Text PDFWe report for the first time, to the best of our knowledge, an all-fiber Raman graded-index (GRIN) fiber laser pumped by a fiber laser. This configuration points to potential future power and brightness increases. Continuous-wave power of 135 W with an M value of 2.
View Article and Find Full Text PDFWe report on the first demonstration of an all-fiber CW Raman laser based on a multimode graded-index fiber directly pumped by multimode fiber-coupled laser diodes. A joint action of Raman clean-up effect and mode-selection properties of special fiber Bragg gratings inscribed in the central part of the graded-index fiber core, results in high-efficiency conversion of a multimode (M~26) pump at 915 nm into a high-quality (M~2.6) output beam at 954 nm.
View Article and Find Full Text PDF