Enantiomers of 3-hydroxybutyric acid (3-HB) can be used as the chiral precursors for the production of various optically active fine chemicals, including drugs, perfumes, and pheromones. In this study, Escherichia coli was engineered to produce (S)-3-HB from glucose through the inverted reactions of the native aerobic fatty acid β-oxidation pathway. Expression of only specific genes encoding enzymes responsible for the conversion of acetyl-CoA to acetoacetyl-CoA, reduction of acetoacetyl-CoA to 3-hydroxybutyryl-CoA and subsequent hydrolysis of 3-hydroxybutyryl-CoA to 3-HB was directly upregulated in an engineered strain.
View Article and Find Full Text PDFThe basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis.
View Article and Find Full Text PDF