Detection and monitoring of airborne hazards using e-noses has been lifesaving and prevented accidents in real-world scenarios. E-noses generate unique signature patterns for various volatile organic compounds (VOCs) and, by leveraging artificial intelligence, detect the presence of various VOCs, gases, and smokes onsite. Widespread monitoring of airborne hazards across many remote locations is possible by creating a network of gas sensors using Internet connectivity, which consumes significant power.
View Article and Find Full Text PDFThe integration of the Internet of Things (IoT) and the telecare medical information system (TMIS) enables patients to receive timely and convenient healthcare services regardless of their location or time zone. Since the Internet serves as the key hub for connection and data sharing, its open nature presents security and privacy concerns and should be considered when integrating this technology into the current global healthcare system. Cybercriminals target the TMIS because it holds a lot of sensitive patient data, including medical records, personal information, and financial information.
View Article and Find Full Text PDFThe enhanced proliferation of connected entities needs a deployment of innovative technologies for the next generation wireless networks. One of the critical concerns, however, is the spectrum scarcity, due to the unprecedented broadcast penetration rate nowadays. Based on this, visible light communication (VLC) has recently emerged as a viable solution to secure high-speed communications.
View Article and Find Full Text PDFNon-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes.
View Article and Find Full Text PDFThe work is devoted to the study of the structural characteristics of the myeloperoxidase-ceruloplasmin-thrombin complex using small-angle neutron scattering methods in combination with computer modeling, as well as surface plasmon resonance and solid-phase enzyme assay. We have previously shown that the functioning of active myeloperoxidase during inflammation, despite the presence in the blood of an excess of ceruloplasmin which inhibits its activity, is possible due to the partial proteolysis of ceruloplasmin by thrombin. In this study, the myeloperoxidase-ceruloplasmin-thrombin heterohexamer was obtained in vitro.
View Article and Find Full Text PDFUltra-low-power is a key performance indicator in 6G-IoT ecosystems. Sensor nodes in this eco-system are also capable of running light-weight artificial intelligence (AI) models. In this work, we have achieved high performance in a gas sensor system using Convolutional Neural Network (CNN) with a smaller number of gas sensor elements.
View Article and Find Full Text PDFThe influenza virus polymerase complex is a promising target for new antiviral drug development. It is known that, within the influenza virus polymerase complex, the PB1 subunit region from the 1st to the 25th amino acid residues has to be is in an alpha-helical conformation for proper interaction with the PA subunit. We have previously shown that PB1(6-13) peptide at low concentrations is able to interact with the PB1 subunit N-terminal region in a peptide model which shows aggregate formation and antiviral activity in cell cultures.
View Article and Find Full Text PDFIn this study, we present molecular dynamics simulations of the antiviral drug triazavirine, that affects formation of amyloid-like fibrils of the model peptide (SI). According to our simulations, triazavirine is able to form linear supramolecular structures which can act as shields and prevent interactions between SI monomers. This model, as validated by simulations, provides an adequate explanation of triazavirine's mechanism of action as it pertains to SI peptide fibril formation.
View Article and Find Full Text PDFThe evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4), the tetrasome (H3·H4), and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation.
View Article and Find Full Text PDFUsing molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA.
View Article and Find Full Text PDF