Publications by authors named "Alexey V Kepman"

Phthalonitrile thermosets are known for their excellent mechanical, physico-chemical, and fire-retardant properties, making them attractive for aerospace and mechanical engineering applications. When producing and applying phthalonitrile-based structural parts, it is essential to consider aspects such as processability and the long-term stability of the material's properties at high temperatures. In our previous studies, we demonstrated that resins containing phosphate-bridged bisphthalonitrile monomers are easily processable due to their low melting temperature and wide processing window.

View Article and Find Full Text PDF

"Green" thermally stable hardener was synthesized from a PET waste. The rigid molecular linear structure of the new hardener suggests that it will provide the polymer matrix with the necessary physical and mechanical characteristics. It also allows the expectation that cured matrix based on this hardener can provide increased toughness.

View Article and Find Full Text PDF

Two types of poly(5-phenyl-2-norbornene) were synthesized via ring opening metathesis and addition polymerization. The polymers sulfonation reaction under homogeneous conditions resulted in ionomer with high sulfonation degree up to 79% (IEC 3.36 meq/g).

View Article and Find Full Text PDF

This article describes data on preparation of sulfonated hydrogenated poly(phenylnorbornene) with different cations synthesized via sequential ring-opening metathesis polymerization, reduction, homogeneous sulfonation and cation exchange reactions. The data of the characterization of new polymers by nuclear magnetic resonance (H NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) are presented. The effect of imidazolium and 1-methylimidazolium cations, ionic liquid and Zwitter-type ion liquid on ionic conductivities evaluated by impedance spectroscopy.

View Article and Find Full Text PDF

Hydrolysis data for Bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate and Bis(3-(3,4-dicyanophenoxy)phenyl) phenylphosphonate under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the reactions products are given. Pseudo-first order rate constants are determined for both substrates at 25, 50 and 80 °C.

View Article and Find Full Text PDF