Dalton Trans
November 2024
In this work, three isomeric fluorinated bipyridyldicarboxamides were studied to evaluate the impact of the fluorine atom position on the structure, stability, Am(III)/Ln(III) separation, and photophysical properties of their complexes. The complexes of the fluorinated amides have a metal-to-ligand composition of 1 : 1, which is independent of the fluorine atom position or lanthanide metal. The bipyridyl fragments in the fluorinated complexes are flattened compared with those in unsubstituted ones.
View Article and Find Full Text PDFPlatinum-based thin films are widely used to create microelectronic devices operating at temperatures above 500 °C. One of the most effective ways to increase the high-temperature stability of platinum-based films involves incorporating refractory metal oxides (e.g.
View Article and Find Full Text PDFThere are currently no effective biomarkers for prognosis and optimal treatment selection to improve non-small cell lung cancer (NSCLC) survival outcomes. This study further validated a seven-gene panel for diagnosis and prognosis of NSCLC using RNA sequencing and proteomic profiles of patient tumors. Within the seven-gene panel, expression combined with dendritic cell activities defined NSCLC patient subgroups ( = 966) with distinct survival outcomes ( = 0.
View Article and Find Full Text PDFThere is an unmet clinical need to identify patients with early-stage non-small cell lung cancer (NSCLC) who are likely to develop recurrence and to predict their therapeutic responses. Our previous study developed a qRT-PCR-based seven-gene microfluidic assay to predict the recurrence risk and the clinical benefits of chemotherapy. This study showed it was feasible to apply this seven-gene panel in RNA sequencing profiles of The Cancer Genome Atlas (TCGA) NSCLC patients ( = 923) in randomly partitioned feasibility-training and validation sets ( < 0.
View Article and Find Full Text PDFOur previous study found that zinc finger protein 71 (ZNF71) mRNA expression was associated with chemosensitivity and its protein expression was prognostic of non-small-cell lung cancer (NSCLC). The Krüppel associated box (KRAB) transcriptional repression domain is commonly present in human zinc finger proteins, which are linked to imprinting, silencing of repetitive elements, proliferation, apoptosis, and cancer. This study revealed that had a significantly higher expression than the -less isoform in NSCLC tumors ( = 197) and cell lines ( = 117).
View Article and Find Full Text PDFSeveral master transcription factors (TF) can activate the epithelial-to-mesenchymal transition (EMT). However, their individual and combinatorial contributions to EMT in breast cancer are not defined. We show that overexpression of EMT-TFs individually in epithelial cells upregulated endogenous SNAI2, ZEB1/2, TCF4, and TWIST1/2 as a result of positive feedback mediated in part by suppression of their negative regulator miRNAs miR200s/203/205.
View Article and Find Full Text PDFWe have synthesized and examined several complexes of lanthanides with diamides of 2,2'-bipyridyl-6,6'-dicarboxylic acid bearing various hetaryl-based side chains for the elucidation of the effect of the heterocycle on the structure and properties of the ligands. The multigram scale methods for the preparation of various -alkyl-hetaryls and their diamides were developed. The solid state structure of 6-methyl-2-pyridylamide of 2,2'-bipyridyl-6,6'-dicarboxylic acid possesses a flat structure where the conformation is completely different from that previously observed for -alkylated 2,2'-bipyridyl-6,6'-dicarboxamides and 2,6-pyridinedicarboxamides.
View Article and Find Full Text PDFFour of the six possible isomeric 2,2'-bipyridyl-6,6'-dicarboxylic dimethylanilides were studied from the point of view of the impact of a secondary coordination sphere on the formation of complexes with lanthanides in solution, as well as the crystal structure and photophysical properties of the complexes. All ligands form complexes with a 1 : 1 metal-to-ligand ratio with an lg β1 in the range of 6.0-8.
View Article and Find Full Text PDFOnly taking into consideration the interplay between processes occurring at different levels of a country can provide the complete social and geopolitical plot of its urban system. We study the interaction of the administrative structure and the geographical connectivity between cities with the help of a multiplex network approach. We found that a spatially-distributed geo-network imposes its own ranking to the hierarchical administrative network, while the latter redistributes the shortest paths between nodes in the geographical layer.
View Article and Find Full Text PDFThe 1,3-dipolar cycloaddition of acyclic 2-diazo-1,3-dicarbonyl compounds (DDC) and thioketones preferably occurs with Z,E-conformers and leads to the formation of transient thiocarbonyl ylides in two stages. The thermodynamically favorable further transformation of C=S ylides bearing at least one acyl group is identified as the 1,5-electrocyclization into 1,3-oxathioles. However, in the case of diazomalonates, the dominating process is 1,3-cyclization into thiiranes followed by their spontaneous desulfurization yielding the corresponding alkenes.
View Article and Find Full Text PDFKAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization, and the DNA damage response, acting as an essential corepressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here, we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers.
View Article and Find Full Text PDFAcyclic diazodicarbonyl compounds react at room temperature with cycloaliphatic thioketones, e.g. 2,2,4,4-tetramethyl-3-thioxocyclobutanе-1-one and adamantanethione, via a cascade process in which the key step is a 1,5-electrocyclization of the intermediate thiocarbonyl ylide leading to tetrasubstituted spirocyclic 1,3-oxathioles.
View Article and Find Full Text PDFLung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA‑200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis.
View Article and Find Full Text PDFAurora A kinase (AURKA) is overexpressed in 96% of human cancers and is considered an independent marker of poor prognosis. While the majority of tumors have elevated levels of AURKA protein, few have AURKA gene amplification, implying that posttranscriptional mechanisms regulating AURKA protein levels are significant. Here, we show that NEDD9, a known activator of AURKA, is directly involved in AURKA stability.
View Article and Find Full Text PDFGrainyhead genes are involved in wound healing and developmental neural tube closure. In light of the high degree of similarity between the epithelial-mesenchymal transitions (EMT) occurring in wound-healing processes and the cancer stem cell-like compartment of tumors, including TGF-β dependence, we investigated the role of the Grainyhead gene, Grainyhead-like-2 (GRHL2) in oncogenic EMT. GRHL2 was downregulated specifically in the claudin-low subclass breast tumors and in basal-B subclass breast cancer cell lines.
View Article and Find Full Text PDFThe repair of DNA damage in highly compact, transcriptionally silent heterochromatin requires that repair and chromatin packaging machineries be tightly coupled and regulated. KAP1 is a heterochromatin protein and co-repressor that binds to HP1 during gene silencing but is also robustly phosphorylated by Ataxia telangiectasia mutated (ATM) at serine 824 in response to DNA damage. The interplay between HP1-KAP1 binding/ATM phosphorylation during DNA repair is not known.
View Article and Find Full Text PDFKrüppel-like factor 4 (KLF4), a transcription factor that regulates cell fate in a context-dependent fashion, is normally induced upon growth arrest or differentiation. In many cancer cells there is dysregulation, with increased expression in proliferating cells. To identify sequence elements that mediate KLF4 suppression in normal epithelial cells, we utilized a luciferase reporter and RK3E cells, which undergo a proliferation-differentiation switch to form an epithelial sheet.
View Article and Find Full Text PDFTRIM28 (KAP1) is upregulated in many cancers and has been implicated in both transcriptional activation and repression. Using chromatin immunoprecipitation and sequencing, we show that KAP1 binding sites fall into several categories, specifically, the 3' coding exons of zinc finger (ZNF) genes and promoter regions of ZNFs and other genes. The currently accepted model is that KAP1 is recruited to the genome via interaction of its N-terminal RBCC domain with KRAB ZNFs (KRAB domain containing ZNFs).
View Article and Find Full Text PDFThe sex determination transcription factor SRY is a cell fate-determining transcription factor that mediates testis differentiation during embryogenesis. It may function by repressing the ovarian determinant gene, RSPO1, action in the ovarian developmental pathway and activates genes, such as SOX9, important for testis differentiation at the onset of gonadogenesis. Further, altered expression of SRY and related SOX genes contribute to oncogenesis in many human cancers.
View Article and Find Full Text PDFThe tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important role in gene silencing by the human co-repressor KRAB-associated protein 1 (KAP1). Here we report the three-dimensional solution structure of the tandem PHD finger-bromodomain of KAP1. The structure reveals a distinct scaffold unifying the two protein modules, in which the first helix, alpha(Z), of an atypical bromodomain forms the central hydrophobic core that anchors the other three helices of the bromodomain on one side and the zinc binding PHD finger on the other.
View Article and Find Full Text PDFTandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain.
View Article and Find Full Text PDFThe MAGE-A, MAGE-B, and MAGE-C protein families comprise the class-I MAGE/cancer testes antigens, a group of highly homologous proteins whose expression is suppressed in all normal tissues except developing sperm. Aberrant expression of class I MAGE proteins occurs in melanomas and many other malignancies, and MAGE proteins have long been recognized as tumor-specific targets; however, their functions have largely been unknown. Here, we show that suppression of class I MAGE proteins induces apoptosis in the Hs-294T, A375, and S91 MAGE-positive melanoma cell lines and that members of all three families of MAGE class I proteins form complexes with KAP1, a scaffolding protein that is known as a corepressor of p53 expression and function.
View Article and Find Full Text PDFThe DNA damage response requires a coordinated nucleo-cytoplasmic cascade of events, which ultimately converge on damaged DNA packaged in chromatin. Few connections between the proteins that remodel chromatin and the proteins that mediate this damage response have been shown. We have investigated the DNA damage-induced phosphorylation of the KRAB-ZFP-associated protein 1 (KAP1), the dedicated corepressor for Krüppel-associated box (KRAB) zinc finger protein (ZFP) proteins.
View Article and Find Full Text PDFMutated forms of p53 are often expressed in a variety of human tumors. In addition to loss of function of the p53 tumor suppressor, mutant p53s contribute to malignant process by acquisition of novel functions that enhance transformed properties of cells and resistance to anticancer therapy in vitro, and increase tumorigenecity, invasiveness and metastatic ability in vivo. Searching for genes that change expression in response to p53 gain of function mutants may give a clue to the mechanisms underlying their oncogenic effects.
View Article and Find Full Text PDF