Publications by authors named "Alexey Savelyev"

A method for characterizing and quantifying peaks formed in an analytical buoyant density equilibrium (ABDE) experiment is presented. An algorithm is derived to calculate the concentration of the density forming gradient material at every point in the cell, provided the rotor speed, temperature, meniscus position, bottom of the cell position, and the loading concentration, molar mass, and partial specific volume of the density gradient-forming material are known. In addition, a new peak fitting algorithm has been developed which allows the user to automatically quantify the peaks formed in terms of density, apparent partial specific volume, and relative abundance.

View Article and Find Full Text PDF

Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recent development made possible by new analytical ultracentrifuge optical systems. MW-AUC extends the basic hydrodynamic information content of AUC and provides access to a wide range of new applications for biopolymer characterization, and is poised to become an essential analytical tool to study macromolecular interactions. It adds an orthogonal spectral dimension to the traditional hydrodynamic characterization by exploiting unique chromophores in analyte mixtures that may or may not interact.

View Article and Find Full Text PDF

In this study we report on the accurate computation of the biomolecular partial specific volume (PSV) from explicit-solvent molecular dynamics (MD) simulations. The case of DNA is considered, and the predictions from two state-of-the-art biomolecular force fields, the CHARMM36 additive (C36) and Drude polarizable models, are presented. Unlike most of the existing approaches to assess the biomolecular PSV, our proposed method bypasses the need for the arbitrarily defined volume partitioning scheme into the intrinsic solute and solvent contributions.

View Article and Find Full Text PDF

Recent advances in instrumentation have moved analytical ultracentrifugation (AUC) closer to a possible validation in a Good Manufacturing Practices (GMP) environment. In order for AUC to be validated for a GMP environment, stringent requirements need to be satisfied; analysis procedures must be evaluated for consistency and reproducibility, and GMP capable data acquisition software needs to be developed and validated. These requirements extend to multiple regulatory aspects, covering documentation of instrument hardware functionality, data handling and software for data acquisition and data analysis, process control, audit trails and automation.

View Article and Find Full Text PDF

Recently, we reported the differential impact of the monovalent cations Li(+), Na(+), K(+), and Rb(+) on DNA conformational properties. These were identified from variations in the calculated solution-state X-ray DNA spectra as a function of the ion type in solvation buffer in MD simulations using our recently developed polarizable force field based on the classical Drude oscillator. Changes in the DNA structure were found to mainly involve variations in the minor groove width.

View Article and Find Full Text PDF

In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li(+), Na(+), K(+), and Rb(+), and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions.

View Article and Find Full Text PDF

The present report demonstrates that the conformational properties of DNA in solution are sensitive to the type of monovalent ion. Results are based on the ability of a polarizable force field using the classical Drude oscillator to reproduce experimental solution X-ray scattering data more accurately than two nonpolarizable DNA models, AMBER Parmbsc0 and CHARMM36. The polarizable model is then used to calculate scattering profiles of DNA in the presence of four different monovalent salts, LiCl, NaCl, KCl, and RbCl, showing the conformational properties of DNA to vary as a function of ion type, with that effect being sequence-dependent.

View Article and Find Full Text PDF

Base flipping in DNA is an important process involved in genomic repair and epigenetic control of gene expression. The driving forces for these processes are not fully understood, especially in the context of the underlying dynamics of the DNA and solvent effects. We studied double-stranded DNA oligomers that have been previously characterized by imino proton exchange NMR using both additive and polarizable force fields.

View Article and Find Full Text PDF

Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA.

View Article and Find Full Text PDF

Presented is a first generation atomistic force field (FF) for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages, and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting quantum mechanical (QM) data and reproducing a number of experimental properties of DNA duplexes in the condensed phase.

View Article and Find Full Text PDF

Numerous theoretical and experimental studies disagree on the impact of surrounding mobile ions on DNA conformational flexibility at high salt content. Specifically, it is not clear how the DNA persistence length varies when concentration of monovalent mobile ions is increased beyond the physiological value of ∼0.1 M.

View Article and Find Full Text PDF

Double-stranded DNA is among the stiffest biopolymers, whose bending propensity crucially influences many vital biological processes. It is not fully understood which among the two most likely forces, electrostatic self-repulsion or the compressive base pair stacking, plays a dominant role in determining the DNA's unique rigidity. Different theoretical and experimental studies led so far to contradictory results on this issue.

View Article and Find Full Text PDF

We used microsecond time scale atomistic simulations to study the relaxation dynamics of the microemulsion water/octane/C(9)E(3) system. In order to determine what transport mechanism occurs under the conditions of surfactant excess, we studied the system under a wide range of temperatures (7-88 °C) and showed that the surfactant acts as an effective solvent for water and carries out passive water transport through oil. Interestingly, most of surfactant-solubilized water is situated between surfactant and oil layers and is not homogeneously distributed in the surfactant-oil slab.

View Article and Find Full Text PDF

Coarse-grained (CG) modeling approaches are widely used to simulate many important biological processes involving DNA, including chromatin folding and genomic packaging. The bending propensity of a semiflexible DNA molecule critically influences these processes. However, existing CG DNA models do not retain a sufficient fidelity of the important local chain motions, whose propagation at larger length scales would generate correct DNA persistent lengths, in particular when the solution's ionic strength is widely varied.

View Article and Find Full Text PDF

The chromatin folding problem is an exciting and rich field for modern research. On the most basic level, chromatin fiber consists of a collection of protein-nucleic acid complexes, known as nucleosomes, joined together by segments of linker DNA. Understanding how the cell successfully compacts meters of highly charged DNA into a micrometer size nucleus while still enabling rapid access to the genetic code for transcriptional processes is a challenging goal.

View Article and Find Full Text PDF

Coarse-graining of atomistic force fields allows us to investigate complex biological problems, occurring at long timescales and large length scales. In this work, we have developed an accurate coarse-grained model for double-stranded DNA chain, derived systematically from atomistic simulations. Our approach is based on matching correlators obtained from atomistic and coarse-grained simulations, for observables that explicitly enter the coarse-grained Hamiltonian.

View Article and Find Full Text PDF

Simplified, yet accurate, coarse-grained models are needed to explore the behavior of complex biological systems by means of Molecular Dynamics (MD) simulations, because many interesting processes occur at long time scales and large length scales that are not amenable to studies by atomistic simulations. The aqueous salt buffer provides an important contribution to the structure and function of biological molecules. While in many simplified models both water and salt are treated as a continuous medium, it is often desirable to describe mobile ions in an explicit manner.

View Article and Find Full Text PDF

We address the question of what are the molecular mechanisms providing discrimination between seemingly similar counterions binding to various biomolecular surfaces. In the case of protein association with Na (+) and K (+) ions, recent works proposed that specificity of carboxylate functional groups interacting with these mobile ions rationalizes the observed ionic discrimination. We probe in this work whether similar arguments may be used to explain higher propensity of Na (+) ions to associate with DNA compared with K (+) ions, which was suggested by our simulations and some experiments.

View Article and Find Full Text PDF

Condensation of monovalent counterions around DNA influences polymer properties of the DNA chain. For example, the Na(+) ions show markedly stronger propensity to induce multiple DNA chains to assemble into compact structures compared with the K(+) ions. To investigate the similarities and differences in the sodium and potassium ion condensation around DNA, we carried out a number of extensive all-atom molecular dynamics simulations of a DNA oligomer consisting of 16 base pairs, [d(CGAGGTTTAAACCTCG)](2), in explicit water.

View Article and Find Full Text PDF

The mesoscopic structure of periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for systems with both strong (ionic) and weak (hydrogen) interactions. We focus on the consideration of the distribution of oligomers along the homopolymer chains that is described by the effective equation of motion with the segment number playing the role of imaginary time. The supersymmetry technique is developed to consider associative hydrogen bonding, self-action effects, inhomogeneity, and temperature fluctuations in the oligomer distribution.

View Article and Find Full Text PDF