Understanding the genetic architecture of drought tolerance is of great importance for overcoming the negative impact of drought on wheat yield. Earlier, we discovered the critical role of chromosome 2A for the drought-tolerant status of wheat spring cultivar Saratovskaya 29. A set of 92 single-chromosome recombinant double haploid (SCRDH) lines were obtained in the genetic background of Saratovskaya 29.
View Article and Find Full Text PDFDensity and length of leaf pubescence are important factors of diversity in the response to water deficiency among wheat genotypes. Many studies evidence an important protective value of leaf hairiness in plants, especially under the conditions of drought, thermal loads and increased solar radiation. However, the physiological and adaptive roles of such traits in cereals, including cultivated plants, have not been sufficiently studied to date.
View Article and Find Full Text PDFA quantitative trait locus (QTL) approach was taken to reveal the genetic basis in wheat of traits associated with photosynthesis during a period of exposure to water deficit stress. The performance, with respect to shoot biomass, gas exchange and chlorophyll fluorescence, leaf pigment content and the activity of various ascorbate-glutathione cycle enzymes and catalase, of a set of 80 wheat lines, each containing a single chromosomal segment introgressed from the bread wheat D genome progenitor Aegilops tauschii, was monitored in plants exposed to various water regimes. Four of the seven D genome chromosomes (1D, 2D, 5D, and 7D) carried clusters of both major (LOD >3.
View Article and Find Full Text PDF