is the oldest classic model object in developmental genetics. It may seem that various structures of the fruit fly at all developmental stages have been well studied and described. However, recently we have shown that some specialized structures of the eggshell contain an amyloid fibril network.
View Article and Find Full Text PDFFunctional amyloids have been identified in a wide variety of organisms including bacteria, fungi, plants, and vertebrates. Intracellular and extracellular amyloid fibrils of different proteins perform storage, protective, structural, and regulatory functions. The structural organization of amyloid fibrils determines their unique physical and biochemical properties.
View Article and Find Full Text PDFAmyloids are fibrillar proteins with a cross-β structure. Pathological amyloids are associated with the development of a number of incurable diseases, while functional amyloids regulate vital processes. The detection of unknown amyloids in living objects is a difficult task, and therefore the question of the prevalence and biological significance of amyloids remains open.
View Article and Find Full Text PDFFunctional amyloids are fibrillary proteins with a cross-β structure that play a structural or regulatory role in pro- and eukaryotes. Previously, we have demonstrated that the RNA-binding FXR1 protein functions in an amyloid form in the rat brain. This RNA-binding protein plays an important role in the regulation of long-term memory, emotions, and cancer.
View Article and Find Full Text PDFAmyloidoses are a group of diseases associated with the formation of pathological protein fibrils with cross-β structures. Approximately 5-10% of the cases of these diseases are determined by amyloidogenic mutations, as well as by transmission of infectious amyloids (prions) between organisms. The most common group of so-called sporadic amyloidoses is associated with abnormal aggregation of wild-type proteins.
View Article and Find Full Text PDFThe severe course of COVID-19 causes systemic chronic inflammation and thrombosis in a wide variety of organs and tissues. The nature of these inflammations remains a mystery, although they are known to occur against the background of a high level of cytokine production. The high level of cytokines provokes overproduction of the Serum amyloid A (SAA) protein.
View Article and Find Full Text PDFAmyloids are β-sheets-rich protein fibrils that cause neurodegenerative and other incurable human diseases affecting millions of people worldwide. However, a number of proteins is functional in the amyloid state in various organisms from bacteria to humans. Using an original proteomic approach, we identified a set of proteins forming amyloid-like aggregates in the brain of young healthy rats.
View Article and Find Full Text PDFThe search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer's, Parkinson's Huntington's diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes.
View Article and Find Full Text PDFDiscovery of prions-proteins that are able to convert between structurally distinct states, of which one or more is transmissible, led to the concept of "protein-based inheritance". According to this concept, the formation of prion fibrils causes DNA-independent heritable traits in microorganisms. Recently, we described a new and unusual type of prion inheritance.
View Article and Find Full Text PDFThe concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S.
View Article and Find Full Text PDFDespite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression.
View Article and Find Full Text PDFWe recently discovered the novel non-chromosomal determinant in Saccharomyces cerevisiae [NSI(+)] (nonsense suppression inducer), which causes omnipotent nonsense suppression in strains where the Sup35 N-terminal domain is deleted. [NSI(+)] possesses yeast prion features and does not correspond to previously identified yeast prion determinants. Here, we show that [NSI(+)] enhances nonsense codon read-through and inhibits vegetative growth in S.
View Article and Find Full Text PDFNon-Mendelian determinants that control heritable traits in yeast are subdivided into two major groups-one that includes DNA- or RNA-based elements and another that comprises protein-based factors that are analogous to mammalian prion. All yeast non-Mendelian determinants show dominant inheritance, and some of them demonstrate cytoplasmic infectivity. Only prions, however, harbor-specific features, such as high frequency of induction following overproduction of prion-encoding protein, loss of the protein's normal function, and reversible curability.
View Article and Find Full Text PDFTo test the hypothesis that inaccurate DNA synthesis by mammalian DNA polymerase eta (pol eta) contributes to somatic hypermutation (SHM) of Ig genes, we measured the error specificity of mouse pol eta during synthesis of each strand of a mouse Ig kappa light chain transgene. We then compared the results to the base substitution specificity of SHM of this same gene in the mouse. The in vitro and in vivo base substitution spectra shared a number of common features.
View Article and Find Full Text PDF