Publications by authors named "Alexey Nikulin"

This research focuses on studying the effects of various pretreatment types on a PtCu/C catalyst synthesized by the co-deposition of metal precursors. The treatment in a 1 M HNO solution for 1 h is shown to result in a slight increase in activity in the oxygen electroreduction reaction (both the mass activity and specific activity calculated for the value of the electrochemically active surface area). The sample obtained after the thermal treatment, which is carried out at 350 °C under an argon atmosphere for 1 h, demonstrates 1.

View Article and Find Full Text PDF

A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing β-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMT, ~1500 kDa).

View Article and Find Full Text PDF

Interleukin-17 (IL-17) is a cytokine produced by the Th17 cells. It is involved in chronic inflammation in patients with autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. The antibodies targeting IL-17 and/or IL-17R are therapy tools for these diseases.

View Article and Find Full Text PDF

ExuR and UxuR are paralogous proteins belonging to the GntR family of transcriptional regulators. Both are known to control hexuronic acid metabolism in a variety of Gammaproteobacteria but the relative impact of each of them is still unclear. Here, we apply 2D difference electrophoresis followed by mass-spectrometry to characterise the changes in the proteome in response to a or deletion.

View Article and Find Full Text PDF

Although oligomeric proteins are predominant in cells, their folding is poorly studied at present. This work is focused on the denaturant- and mutation-induced disassembly of the hexameric mutant Y55W of the Qβ host factor (Hfq) from mesophilic (). Using intrinsic tryptophan fluorescence, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC), we show that the dissociation of Hfq Y55W occurs either under the effect of GuHCl or during the pre-denaturing transition, when the protein concentration is decreased, with both events proceeding through the accumulation of stable intermediate states.

View Article and Find Full Text PDF

The review discusses differences between the specific protein interactions with single- and double-stranded RNA molecules using the data on the structure of RNA-protein complexes. Proteins interacting with the single-stranded RNAs form contacts with RNA bases, which ensures recognition of specific nucleotide sequences. Formation of such contacts with the double-stranded RNAs is hindered, so that the proteins recognize unique conformations of the RNA spatial structure and interact mainly with the RNA sugar-phosphate backbone.

View Article and Find Full Text PDF

The structure and the RNA-binding properties of the Lsm protein from Halobacterium salinarum have been determined. A distinctive feature of this protein is the presence of a short L4 loop connecting the β3 and β4 strands. Since bacterial Lsm proteins (also called Hfq proteins) have a short L4 loop and form hexamers, whereas archaeal Lsm proteins (SmAP) have a long L4 loop and form heptamers, it has been suggested that the length of the L4 loop may affect the quaternary structure of Lsm proteins.

View Article and Find Full Text PDF

Members of the Lsm protein family are found in all three domains of life: bacteria, archaea, and eukarya. They are involved in numerous processes associated with RNA processing and gene expression regulation. A common structural feature of all Lsm family proteins is the presence of the Sm fold consisting of a five-stranded β-sheet and an α-helix at the N-terminus.

View Article and Find Full Text PDF

This work investigated in vitro aggregation and amyloid properties of skeletal myosin binding protein-C (sMyBP-C) interacting in vivo with proteins of thick and thin filaments in the sarcomeric A-disc. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) found a rapid (5-10 min) formation of large (>2 μm) aggregates. sMyBP-C oligomers formed both at the initial 5-10 min and after 16 h of aggregation.

View Article and Find Full Text PDF

Transcription factors play a crucial role in control of life of a bacterial cell, working as switchers to a different life style or pathogenicity. To reconstruct the network of regulatory events taking place in changing growth conditions, we need to know regulons of as many transcription factors as possible, and motifs recognized by them. Experimentally this can be attained via ChIP-seq in vivo, SELEX and DNAse I footprinting in vitro.

View Article and Find Full Text PDF

Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms.

View Article and Find Full Text PDF

Investigation of the molecular mechanisms underlying amyloid-related human diseases attracts close attention. These diseases, the number of which currently is above 40, are characterized by formation of peptide or protein aggregates containing a cross-β structure. Most of the amyloidogenesis mechanisms described so far are based on experimental studies of aggregation of short peptides, intrinsically disordered proteins, or proteins under denaturing conditions, and studies of amyloid aggregate formations by structured globular proteins under conditions close to physiological ones are still in the initial stage.

View Article and Find Full Text PDF

The mutant form of Citrobacter freundii methionine γ-lyase with the replacement of active site Cys115 for His has been found to be inactive in the γ-elimination reaction of methionine while fully active in the γ-elimination reaction of O-acetyl-l-homoserine and in the β-elimination reaction of S-alk(en)yl-substituted cysteines. In this work, the crystal structure of the mutant enzyme complexed with competitive inhibitor, l-norleucine was determined at 1.45Å resolution.

View Article and Find Full Text PDF

A correlation between the ligand-protein affinity and the identification of the ligand in the experimental electron density maps obtained by X-ray crystallography has been tested for a number of RNA-binding proteins. Bacterial translation regulators ProQ, TRAP, Rop, and Hfq together with their archaeal homologues SmAP have been used. The equilibrium dissociation constants for the N-methyl-anthraniloyl-labelled adenosine and guanosine monophosphates titrated by the proteins have been determined by the fluorescent anisotropy measurements.

View Article and Find Full Text PDF

We performed a comparative study of the process of amyloid formation by short homologous peptides with a substitution of aspartate for glutamate in position 2 - VDSWNVLVAG (AspNB) and VESWNVLVAG (GluNB) - with unblocked termini. Peptide AspNB (residues 166-175) corresponded to the predicted amyloidogenic region of the protein glucantransferase Bgl2 from the Saccharomyces cerevisiae cell wall. The process of amyloid formation was monitored by fluorescence spectroscopy (FS), electron microscopy (EM), tandem mass spectrometry (TMS), and X-ray diffraction (XD) methods.

View Article and Find Full Text PDF

The data presented in this article are related to the research article entitled "One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42" (Dovidchenko et al., 2016) [1]. Aβ peptide is one of the most intensively studied amyloidogenic peptides.

View Article and Find Full Text PDF

The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly.

View Article and Find Full Text PDF

Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the γ-elimination reaction of L-methionine. The enzyme is a promising target for therapeutic intervention in some anaerobic pathogens and has attracted interest as a potential cancer treatment. The crystal structure of MGL from Clostridium sporogenes has been determined at 2.

View Article and Find Full Text PDF

The aim of this study was to investigate the process of amyloidogenesis of amyloid-β (Aβ)42 peptide, by means of fluorescence spectroscopy, electron microscopy, X-ray diffraction, and mass spectrometry. It has been repeatedly reported in the literature that the process of fibril formation by Aβ42 peptide depends considerably not only upon the specific conditions (ionic conditions, pH, temperature, mixing, etc.), as well as the manufacturing route (synthetic or recombinant), but also on the methods of synthesis and purification.

View Article and Find Full Text PDF

2'-5'-Oligoadenylate synthetases (OASs) produce the second messenger 2'-5'-oligoadenylate, which activates RNase L to induce an intrinsic antiviral state. We report on the crystal structures of catalytic intermediates of OAS1 including the OAS1·dsRNA complex without substrates, with a donor substrate, and with both donor and acceptor substrates. Combined with kinetic studies of point mutants and the previously published structure of the apo form of OAS1, the new data suggest a sequential mechanism of OAS activation and show the individual roles of each component.

View Article and Find Full Text PDF

A new layered trigonal (P3̅1m) form of MnSb2O6, isostructural with MSb2O6 (M = Cd, Ca, Sr, Pb, and Ba) and MAs2O6 (M = Mn, Co, Ni, and Pd), was prepared by ion-exchange reaction between ilmenite-type NaSbO3 and MnSO4-KCl-KBr melt at 470 °C. It is characterized by Rietveld analysis of the X-ray diffraction pattern, electron microprobe analysis, magnetic susceptibility, specific heat, and ESR measurements as well as by density functional theory calculations. MnSb2O6 is very similar to MnAs2O6 in the temperature dependence of their magnetic susceptibility and spin exchange interactions.

View Article and Find Full Text PDF

The three-dimensional structure of the external aldimine of Citrobacter freundii methionine γ-lyase with competitive inhibitor glycine has been determined at 2.45 Å resolution. It revealed subtle conformational changes providing effective binding of the inhibitor and facilitating labilization of Cα-protons of the external aldimine.

View Article and Find Full Text PDF

The Hfq protein forms a doughnut-shaped homohexamer that possesses RNA-binding activity. There are two distinct RNA-binding surfaces located on the proximal and the distal sides of the hexamer. The proximal side is involved in the binding of mRNA and small noncoding RNAs (sRNAs), while the distal side has an affinity for A-rich RNA sequences.

View Article and Find Full Text PDF

YB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions.

View Article and Find Full Text PDF