G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5-R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 () knockout on insulin secretion.
View Article and Find Full Text PDFPilocarpine is a prototypical drug used to treat glaucoma and dry mouth and is classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1000 times less potent in stimulating mouse-eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), although all three ligands have similar values for M3R.
View Article and Find Full Text PDFIn pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gβ5, such that the knockout of the gene results in degradation of all R7 subunits.
View Article and Find Full Text PDFIn the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration.
View Article and Find Full Text PDFRGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity.
View Article and Find Full Text PDFVariation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs).
View Article and Find Full Text PDFEarlier, a family of G protein-coupled receptors, termed T2Rs, was identified in the rodent and human genomes through data mining. It was suggested that these receptors mediate bitter taste perception. Analysis of the human genome revealed that the hT2R family is composed of 25 members.
View Article and Find Full Text PDFG protein-coupled receptor kinases (GRKs) specifically phosphorylate agonist-occupied G protein-coupled receptors at the inner surface of the plasma membrane (PM), leading to receptor desensitization. GRKs utilize a variety of mechanisms to bind tightly, and sometimes reversibly, to cellular membranes. Previous studies demonstrated the presence of a membrane binding domain in the C terminus of GRK5.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) transduce cellular signals from hormones, neurotransmitters, light, and odorants by activating heterotrimeric guanine nucleotide-binding (G) proteins. For many GPCRs, short term regulation is initiated by agonist-dependent phosphorylation by GPCR kinases (GRKs), such as GRK2, resulting in G protein/receptor uncoupling. GRK2 also regulates signaling by binding G alpha(q/ll) and inhibiting G alpha(q) stimulation of the effector phospholipase C beta.
View Article and Find Full Text PDF