We report the observation of a phase transition of diamond to denser than diamond carbon phase composed from 2 to 3 fullerene-type shells of onions. Raman spectra indicate the fullerene-type of the onions shells. The onions phase is a stable phase in a diamond instability zone of a phase diagram of carbon at pressure 70 GPa and temperature 2400 K.
View Article and Find Full Text PDFSurface-enhanced IR absorption (SEIRA) microscopy was used to reveal main chemical and physical interactions between bacteria and different laser-nanostructured bactericidal Si surfaces via simultaneous chemical enhancement of the corresponding IR-absorption in the intact functional chemical groups. A cleaner, less passivated surface of Si nanoripples, laser-patterned in water, exhibits much stronger enhancement of SEIRA signals compared to the bare Si wafer, the surface coating of oxidized Si nanoparticles and oxidized/carbonized Si (nano) ripples, laser-patterned in air and water. Additional very strong bands emerge in the SEIRA spectra on the clean Si nanoripples, indicating the potential chemical modifications in the bacterial membrane and nucleic acids during the bactericidal effect.
View Article and Find Full Text PDFPhase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.
View Article and Find Full Text PDF