Publications by authors named "Alexey M Romshin"

Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, both in the synthesis of nanodiamonds and in the controlled formation of negatively charged silicon-vacancy centers in such nanodiamonds. Using different adamantane/detonation nanodiamond weight ratios, a series of samples was synthesized at a pressure of 7.

View Article and Find Full Text PDF

Precise control of cellular temperature at the microscale is crucial for developing novel neurostimulation techniques. Here, the effect of local heat on the electrophysiological properties of primary neuronal cultures and HEK293 cells at the subcellular level using a cutting-edge micrometer-scale thermal probe, the diamond heater-thermometer (DHT), is studied. A new mode of local heat action on a living cell, thermal-capture mode (TCM), is discovered using the DHT probe.

View Article and Find Full Text PDF

Temperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments.

View Article and Find Full Text PDF

We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser.

View Article and Find Full Text PDF

The production of heat by mitochondria is critical for maintaining body temperature, regulating metabolic rate, and preventing oxidative damage to mitochondria and cells. Until the present, mitochondrial heat production has been characterized only by methods based on fluorescent probes, which are sensitive to environmental variations (viscosity, pH, ionic strength, quenching, etc.).

View Article and Find Full Text PDF

Two novel properties, unique for semiconductors, a negative electron affinity and a high p-type surface electrical conductivity, were discovered in diamond at the end of the last century. Both properties appear when the diamond surface is hydrogenated. A natural question arises: is the influence of the surface hydrogen on diamond limited only to the electrical properties? Here, for the first time to our knowledge, we observe a transparency peak at 1328 cm in the infrared absorption of hydrogen-terminated pure (undoped) nanodiamonds.

View Article and Find Full Text PDF

Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported.

View Article and Find Full Text PDF