Publications by authors named "Alexey Koposov"

Whenever the cycling of Li-ion batteries is stopped, the electrode materials undergo a relaxation process, but the structural changes that occur during relaxation are not well-understood. We have used operando synchrotron X-ray diffraction with a time resolution of 1.24 s to observe the structural changes that occur when the lithiation of graphite and LiFePO electrodes are interrupted.

View Article and Find Full Text PDF

The design of artificial solid eletroctrolyte interphase is an important task to minimize capacity losses in Li-ion batteries. Herein, TiO created through atomic layer deposition was used as an artificial SEI on Si nanoparticles. Such coating led to substantial improvement of cycling stability when evaluated with FEC-free electrolyte.

View Article and Find Full Text PDF

Operando characterization can reveal degradation processes in battery materials and are essential for the development of battery chemistries. This study reports the first use of quasi-simultaneous operando pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) of a battery cell, providing a detailed, atomic-level understanding of the cycling mechanism of BiMoO as an anode material for Na-ion batteries. This material cycles via a combined conversion-alloying reaction, where electrochemically active, nanocrystalline Na Bi particles embedded in an amorphous Na-Mo-O matrix are formed during the first sodiation.

View Article and Find Full Text PDF

Development of new anode materials for Na-ion batteries strongly depends on a detailed understanding of their cycling mechanism. Due to instrumental limitations, the majority of mechanistic studies focus on materials' characterization at low cycling rates. In this work, we evaluate and compare the (de)sodiation mechanisms of BiFeO in Na-ion batteries at different current densities using X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS).

View Article and Find Full Text PDF

Li intercalation and graphite stacking have been extensively studied because of the importance of graphite in commercial Li-ion batteries. Despite this attention, there are still questions about the atomistic structures of the intermediate states that exist during lithiation, especially when phase dynamics cause a disordered Li distribution. The Li migration event (diffusion coefficient of 10 nm ns) makes it difficult to explore the various Li-intercalation configurations in conventional molecular dynamics (MD) simulations with an affordable simulation timescale.

View Article and Find Full Text PDF

Based on the same rocking-chair principle as rechargeable Li-ion batteries, Na-ion batteries are promising solutions for energy storage benefiting from low-cost materials comprised of abundant elements. However, despite the mechanistic similarities, Na-ion batteries require a different set of active materials than Li-ion batteries. Bismuth molybdate (BiMoO) is a promising NIB anode material operating through a combined conversion/alloying mechanism.

View Article and Find Full Text PDF

In modern Li-based batteries, alloying anode materials have the potential to drastically improve the volumetric and specific energy storage capacity. For the past decade silicon has been viewed as a "Holy Grail" among these materials; however, severe stability issues limit its potential. Herein, we present amorphous substoichiometric silicon nitride (SiN) as a convertible anode material, which allows overcoming the stability challenges associated with common alloying materials.

View Article and Find Full Text PDF

Amorphous silicon nanoparticles were synthesized through pyrolysis of silane gas at temperatures ranging from 575 to 675 °C. According to the used temperature and silane concentration, two distinct types of particles can be obtained: at 625 °C, spherical particles with smooth surface and a low degree of aggregation, but at a higher temperature (650 °C) and lower silane concentration, particles with extremely rough surfaces and high degree of aggregation are found. This demonstrates the importance of the synthesis temperature on the morphology of silicon particles.

View Article and Find Full Text PDF

Silicon, while suffering from major degradation issues, has been recognized as a next promising material to replace currently used graphite in the anodes of Li-ion batteries. Several pathways to mitigate the capacity fading of silicon has been proposed, including optimization of the electrode composition. Within the present work we evaluated different binder formulations to improve the long-term performance of the Li-ion batteries' anodes based on industrial grade silicon (Si) which is typically characterized by a particle sizes ranging from 100 nm to 5.

View Article and Find Full Text PDF

Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through "doping;" however, persistent electronic doping of these NCs remains a challenge. Here, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene.

View Article and Find Full Text PDF

Understanding the mechanisms for photodegradation of nanocrystal quantum dots is an important step toward their application in real-world technologies. A usual assumption is that photochemical modifications in nanocrystals, such as their photooxidation, are triggered by absorption of a photon in the dot itself. Here, we demonstrate that, contrary to this commonly accepted picture, nanocrystal oxidation can be initiated by photoexcitation of solvent-oxygen ion pairs that relax to produce singlet oxygen, which then reacts with the nanocrystals.

View Article and Find Full Text PDF

The interaction between CdSe nanocrystals (NCs) passivated with trioctylphosphine oxide (TOPO) ligands and a series of Ru-polypyridine complexes-[Ru(bpy)(3)](PF(6))(2) (1), [Ru(bpy)(2)(mcb)](PF(6))(2) (2), [Ru(bpy)(mcb)(2)](BarF)(2) (3), and [Ru(tpby)(2)(dcb)](PF(6))(2) (4) (where bpy = 2,2'-bipyridine, mcb = 4-carboxy-4'-methyl-2,2'-bipyridine, tbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; dcb = 4,4'-dicarboxy-2,2'-bipyridine, and BarF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)-was studied by attenuated total reflectance FTIR (ATR-FTIR) and modeled using density functional theory (DFT). ATR-FTIR studies reveal that when the solid film of NCs is exposed to an acetonitrile solution of 2, 3, or 4, the complexes chemically bind to the NC surface through their carboxylic acid groups, replacing TOPO ligands. The corresponding spectral changes are observed on a time scale of minutes.

View Article and Find Full Text PDF

We report a study of the internal quantum efficiency (IQE) of CdSe quantum-dot (QD)-sensitized solar cells prepared by direct adsorption of pre-synthesized QDs, passivated with either tri-n-octylphosphine oxide (TOPO) or n-butylamine (BA), onto a nanocrystalline TiO(2) film.

View Article and Find Full Text PDF

We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO(2) film (NQD/TiO(2)), aqueous Na(2)S or Li(2)S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO(2) photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO(2) interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode.

View Article and Find Full Text PDF

Changes in the ground and excited state electronic structure of the [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) complex induced by functionalization of bpy ligands with carboxyl and methyl groups in their protonated and deprotonated forms are studied experimentally using absorption and emission spectroscopy and theoretically using density functional theory (DFT) and time dependent DFT (TDDFT). The introduction of the carboxyl groups shifts the metal-to-ligand-charge-transfer (MLCT) absorption and emission bands to lower energies in functionalized complexes. Our calculations show that this red-shift is due to the stabilization of the lowest unoccupied orbitals localized on the substituted ligands, while the energies of the highest occupied orbitals localized on the Ru-center are not significantly affected.

View Article and Find Full Text PDF

Effects of air exposure on surface properties, electronic structure, and carrier relaxation dynamics in colloidal PbSe nanocrystals (NCs) were studied using X-ray photoelectron spectroscopy, transmission electron microscopy, and steady-state and time-resolved photoluminescence (PL) spectroscopies. We show that exposure of NC hexane solutions to air under ambient conditions leads to rapid oxidation of NCs such that up to 50% of their volume is transformed into PbO, SeO2, or PbSeO3 within 24 h. The oxidation is a thermally activated process, spontaneous at room temperature.

View Article and Find Full Text PDF

The treatment of [(diacetoxy)iodo]benzene with sodium bisulfate leads to the formation of oligomeric cationic species resulting from self-assembly of hydroxy(phenyl)iodonium ions, [PhIOH](+), in an aqueous acidic media. Depending on the PhI(OAc)(2):NaHSO(4) ratio, three new oligomeric products have been isolated and characterized by X-ray crystallography. The treatment of 5 equiv of PhI(OAc)(2) with 1 equiv of NaHSO(4).

View Article and Find Full Text PDF

Background: Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P.

View Article and Find Full Text PDF

Solvated tris-complexes of (R)- and (S)-1,1'-binaphthyl-2,2'-dyil phosphate with lanthanum(III) and europium(III) centers were prepared and characterized by spectroscopic methods and elemental analysis. Circularly polarized luminescence (CPL) spectra for the optically active isomers of the europium complexes are also reported.

View Article and Find Full Text PDF

Cis and trans isomers of ferrocene-based donor-acceptor assemblies, Fc-C(I)=CH(I), Fc-C(I)=CH(CN), and Fc-C(CN)=CH(CN) (Fc is ferrocene), along with the Fc-C(CN)=C(CN)2 complex have been prepared and characterized by 1H, 13C, gHMQC, and gHMBC NMR spectra, IR, UV-vis, and MCD spectroscopy methods, as well as elemental analyses. The oxidation potentials, investigated by cyclic voltammetry, of all donor-acceptor assemblies are in agreement with the electron-acceptor strength of the substituents attached to the ferrocene core. X-ray crystallography studies of cis and trans isomers of Fc-C(I)=CH(CN) and Fc-C(CN)=CH(CN) reveal a significant rotational flexibility of the cyanovinyl group, which was explained on the basis of semiempirical PM3 calculations.

View Article and Find Full Text PDF

Metal-free 5,10,15,20-tetraferrocenylporphyrin and 5,10-bisferrocenyl-15,20-bisphenylporphyrin have been prepared and characterized by UV-Vis, MCD, (1)H, (13)C, and variable-temperature NMR, APCI- and ESI-MS, and Mössbauer spectroscopy, while their redox properties were investigated using electrochemical (cyclic voltammetry and differential pulse voltammetry), spectroelectrochemical, and chemical oxidation approaches. The electronic structure calculations at Density Functional Theory level reveal that both compounds adopt saddle conformations and the HOMOs in both complexes are predominantly metal-centered, while the LUMOs predominantly consist of porphyrin pi* orbitals. In spite of the rotational freedom of ferrocenyl substituents at room temperature, both metal-free 5,10,15,20-tetraferrocenylporphyrin and 5,10-bisferrocenyl-15,20-bisphenylporphyrin are able to form mixed-valence states upon the successive ferrocene-based two- and one-electron oxidations, respectively, as confirmed by UV-Vis, MCD, Mössbauer, electro-, and spectroelectrochemical methods, and thus, the earlier suggested (Boyd et al.

View Article and Find Full Text PDF

New facile methodology for the preparation of pentavalent iodine compounds using peracetic acid as an oxidant in the presence of catalytic amounts of ruthenium trichloride is described. The new procedure allows the preparation of several previously unknown iodylarenes bearing strongly electron-withdrawing CF3 groups in the aromatic ring.

View Article and Find Full Text PDF

2-Iodylphenol ethers were prepared by the dimethyldioxirane oxidation of the corresponding 2-iodophenol ethers and isolated as chemically stable, microcrystalline products. Single-crystal X-ray diffraction analysis of 1-iodyl-2-isopropoxybenzene 8c and 1-iodyl-2-butoxybenzene 8d revealed pseudopolymeric arrangements in the solid state formed by intermolecular interactions between IO2 groups of different molecules. 2-Iodylphenol ethers can selectively oxidize sulfides to sulfoxides and alcohols to the respective aldehydes or ketones.

View Article and Find Full Text PDF