A vast majority of electrical devices have integrated magnetic units, which generate constant magnetic fields with noticeable vibrations. The majority of existing nanogenerators acquire energy through friction/mechanical forces and most of these instances overlook acoustic vibrations and magnetic fields. Magnetic two-dimensional (2D) tellurides present a wide range of possibilities for devising a potential flexible energy harvester.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (TMDs) and alloys based on them, is a promising platform for creating opto- and nanoelectronic devices. For layered alloys, there is a strong need to theoretically determine the frequencies of vibrational modes and dependences of their energies on the stoichiometric composition. By comparing experimentally measured Raman modes with theoretical predictions, it becomes possible to determine the stoichiometric composition of the manufactured alloys.
View Article and Find Full Text PDFRecently, Ti-Ni based intermetallic alloys with shape memory effect (SME) have attracted much attention as promising functional materials for the development of record small nanomechanical tools, such as nanotweezers, for 3D manipulation of the real nano-objects. The problem of the fundamental restrictions on the minimal size of the nanomechanical device with SME for manipulation is connected with size effects which are observed in small samples of Ti-Ni based intermetallic alloys with thermoplastic structural phase transition from austenitic high symmetrical phase to low symmetrical martensitic phase. In the present work, by combining density functional theory and molecular dynamics modelling, austenite has been shown to be more stable than martensite in nanometer-sized TiNi wafers.
View Article and Find Full Text PDFThe acceleration of parallel high-throughput first-principle calculations in the context of 3D (three dimensional) periodic boundary conditions for low-dimensional systems, and particularly 2D materials, is an important issue for new material design. Where the scalability rapidly deflated due to the use of large void unit cells along with a significant number of atoms, which should mimic layered structures in the vacuum space. In this report, we explored the scalability and performance of the Quantum ESPRESSO package in the hybrid central processing unit - graphics processing unit (CPU-GPU) environment.
View Article and Find Full Text PDFWe present inq, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphic processing units (GPUs). Besides GPU support, inq makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code.
View Article and Find Full Text PDFNanotweezers based on the shape memory effect have been developed and tested. In combination with a commercial nanomanipulator, they allow 3D nanoscale operation controlled in a scanning electron microscope. Here we apply the tweezers for the fabrication of nanostructures based on whiskers of NbS, a quasi one-dimensional compound with room-temperature charge density wave (CDW).
View Article and Find Full Text PDFMost of the experimentally discovered compounds in the iron-nitrogen system belong to the low concentration part of the Fe-N phase diagram. In our paper, which is based on ab initio calculations, we have studied the formation and stability of high-pressure iron mono-nitride phases, and in particular a new magnetic phase with a NiAs-type structure. We have investigated the role of dynamic, thermodynamic and electronic properties, such as electronic correlations and pressure-induced phase stabilisation.
View Article and Find Full Text PDFSpin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation.
View Article and Find Full Text PDF