Publications by authors named "Alexey Gorevoy"

Micromodification in bulk undoped polymethylmethacrylate (PMMA) by single focused (numerical aperture (NA) = 0.25), 1030-nm 250-fs laser pump pulses was explored by pump self-transmittance; optical, 3D-scanning confocal photoluminescence (PL); Raman micro-spectroscopy; and optical polarimetric and interferometric microscopy. Starting from the threshold pulse energy  = 0.

View Article and Find Full Text PDF

Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900-1800 cm and 2800-3100 cm and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths.

View Article and Find Full Text PDF

Tightly focused 515-nm, 0.3-ps laser pulses modify in a laser filamentation regime the crystalline structure of an Ib-type high-pressure, high-temperature (HPHT) synthesized diamond in a thin-plate form. The modified microregions (micromarks) in the yellow and colorless crystal zones, possessing different concentrations of elementary substitutional nitrogen (N) impurity atoms (C-centers), exhibit their strongly diminished local IR absorption (upon correction to the thickness scaling factor).

View Article and Find Full Text PDF

Inscription of embedded photoluminescent microbits inside micromechanically positioned bulk natural diamond, LiF and CaF crystals was performed in sub-filamentation (geometrical focusing) regime by 525 nm 0.2 ps laser pulses focused by 0.65 NA micro-objective as a function of pulse energy, exposure and inter-layer separation.

View Article and Find Full Text PDF

An ultrashort-pulse laser inscription of embedded birefringent microelements was performed inside bulk fluorite in pre-filamentation (geometrical focusing) and filamentation regimes as a function of laser wavelength, pulsewidth and energy. The resulting elements composed of anisotropic nanolattices were characterized by retardance () and thickness () quantities, using polarimetric and 3D-scanning confocal photoluminescence microscopy, respectively. Both parameters exhibit a monotonous increase versus pulse energy, going over a maximum at 1-ps pulsewidth at 515 nm, but decrease versus laser pulsewidth at 1030 nm.

View Article and Find Full Text PDF

We report on wavelength-multiplexed digital holographic imaging based on simultaneous Bragg diffraction of wideband light by several ultrasound waves of different frequencies in crystalline media. This technique is easy to implement, avoids spectral scanning, and is applicable in various digital holography schemes. It also enables single-shot acquisition of a few spectral fringe patterns by a single monochrome sensor and wavelength demultiplexing of the resulting interferogram.

View Article and Find Full Text PDF

A rather narrow field of view (FOV) has always been considered as an essential limitation of spectral imagers based on acousto-optical tunable filters (AOTFs). We demonstrate a computational technique to overcome this constraint. It is based on preliminary precise spectral-angular characterization of beam transformation caused by light diffraction on an acoustic wave and consequent correction of acquired stack of spectral images.

View Article and Find Full Text PDF

Spectral image filtration by means of acousto-optical tunable filters (AOTFs) has multiple applications. For its implementation, a few different optical schemes are in use. They differ in image quality, number of coupling components, dimensions and alignment complexity.

View Article and Find Full Text PDF

We address the optical design procedure of prism-based stereoscopic imaging systems. Conventional approach includes two sequential stages: selection of the hardware and development of the proper digital image processing algorithms. At each of these stages, specific techniques are applied, which are almost unrelated to each other.

View Article and Find Full Text PDF

Stereoscopic video endoscopes are widely used for remote visual inspection and precise three-dimensional (3D) measurements in industrial and biomedical applications. The reconstruction of 3D points from the corresponding image points requires a geometrical calibration procedure, the accuracy of which affects the measurement uncertainty. We propose to perform an optimal choice of the calibration technique and the calibration target parameters using a computer simulation at the design stage.

View Article and Find Full Text PDF

Stereoscopic imagers are widely used in machine vision for three-dimensional (3D) visualization as well as in non-destructive testing for quantitative characterization of cracks, delamination and other defects. Measurement capability in these systems is provided by a proper combination of the optical parameters and data processing techniques. Conventional approach to their design consists of two sequential stages: optical system design and optimization of calibration and image processing algorithms.

View Article and Find Full Text PDF

We propose a new technique for three-dimensional (3-D) imaging in arbitrary spectral intervals. It is based on a simultaneous diffraction of two divergent stereoscopic light beams on a single acoustic wave propagating in a uniaxial birefringent crystal. We discuss in detail this configuration of acousto-optic (AO) interaction, derive basic relations, and experimentally demonstrate the applicability of the proposed approach to 3-D spectral imaging.

View Article and Find Full Text PDF