Understanding the exact mechanisms of the activation of proinflammatory immune response receptors is very important for the targeted regulation of their functioning. In this work, we were able to identify the sites of the molecules in the proinflammatory cytokine TNF (tumor necrosis factor) and its TNFR1 (tumor necrosis factor receptor 1), which are necessary for the two-stage cytotoxic signal transduction required for tumor cell killing. A 12-membered TNFR1 peptide was identified and synthesized, interacting with the ligands of this receptor protein's TNF and Tag7 and blocking their binding to the receptor.
View Article and Find Full Text PDFHigh mobility group protein (HMGB1) is secreted by myeloid cells and cells of damaged tissues during inflammation, causing inflammatory reactions through various receptors, including TLR and RAGE. TREM-1 is considered to be one of the potential HMGB1 receptors. In this work, we have shown that the HMGB1 protein is able to bind to the TREM-1 receptor at high affinity both in solution and on the cell surface.
View Article and Find Full Text PDFThe Polybromo-associated BAF (BRG1- or BRM-associated factors) (PBAF) chromatin-remodeling complex is essential for transcription in mammalian cells. In this study, we describe a novel variant of the PBAF complex from differentiated neuronal cells, called dcPBAF, that differs from the canonical PBAF existing in proliferating neuroblasts. We describe that in differentiated adult neurons, a specific subunit of PBAF, PHF10, is replaced by a PHF10 isoform that lacks N- and C-terminal domains (called PHF10D).
View Article and Find Full Text PDFIn mammals, a large number of proteins are expressed as more than one isoform, resulting in the increased diversity of their proteome. Understanding the functions of isoforms is very important, since individual isoforms of the same protein can have oncogenic or pathogenic properties, or serve as disease markers. The high homology of isoforms with ubiquitous expression makes it difficult to study them.
View Article and Find Full Text PDFWe have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming.
View Article and Find Full Text PDFUsing the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit.
View Article and Find Full Text PDFUsing a model system of FitzHugh-Nagumo type in the excitable regime, the similarity between synchronization of self-sustained and noise-induced oscillations is studied for the case of more than one main frequency in the spectrum. It is shown that this excitable system undergoes the same frequency lockings as a self-sustained quasiperiodic oscillator. The presence of noise-induced both stable and unstable limit cycles and tori, as well as their tangential bifurcations, are discussed.
View Article and Find Full Text PDF