Publications by authors named "Alexey Bigildeev"

Multipotent mesenchymal stromal cells (MSCs) are currently under intensive investigation for the treatment and prevention of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), owing to their substantial immunomodulatory properties. The responses of recipients to MSC infusion following allo-HSCT are not yet well understood. T cells are central to the adaptive immune system, protecting the organism from infection and malignant cells.

View Article and Find Full Text PDF

The properties of bone marrow (BM)-derived multipotent mesenchymal stromal cells (MSCs) are altered in the patients with the diffuse large B cell lymphoma (DLBCL) without BM involvement. It was suggested that plasma from the patients contains soluble factors that affect MSCs. Plasma and BM-derived MSCs from the DLBCL patients at the onset of the disease and one month after the end of treatment were studied.

View Article and Find Full Text PDF

Background: Multipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective.

View Article and Find Full Text PDF

Interleukin-1 beta () is a key inducer of inflammation and an important factor in the regulation of hematopoietic stem cells and mesenchymal stromal progenitors. Irradiation of mice with ionizing radiation has been shown to induce a lasting increase in IL1B concentration in peripheral blood. One of the possible mechanisms may be demethylation of CpG cytosines in the promoter, which has not been characterized in detail for the mouse.

View Article and Find Full Text PDF

We analyzed multipotent mesenchymal stromal cells (MMSCs) from the bone marrow (BM) of 33 acute myeloid leukemia (AML) patients at diagnosis, after the first course of chemotherapy (day 37), and at days 100 and 180 after diagnosis. All patients were treated according to the AML 01.10 protocol.

View Article and Find Full Text PDF

Bone marrow (BM) derived adult multipotent mesenchymal stromal cells (MMSCs) and fibroblast colony-forming units (CFU-Fs) of 20 patients with acute myeloid leukemia (AML) and 15 patients with acute lymphoblastic leukemia (ALL) before and during 1 year after receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) were studied. The growth characteristics of MMSCs of all patients before allo-HSCT were not altered; however, relative expression level (REL) of some genes in MMSCs, but not in CFU-Fs, from AML and ALL patients significantly changed. After allo-HSCT, CFU-F concentration and MMSC production were significantly decreased for 1 year; REL of several genes in MMSCs and CFU-F-derived colonies were also significantly downregulated.

View Article and Find Full Text PDF

Background: The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells.

Methods: MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia.

View Article and Find Full Text PDF

Background: Multipotent mesenchymal stromal cells (MSCs) are used for prophylaxis of acute graft-versus-host disease (aGvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Not all samples of MSC are efficient for aGvHD prevention. The suitability of MSCs for aGvHD prophylaxis was studied.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MMSCs) have been demonstrated to produce mature stromal cells and maintain hematopoietic progenitor cells (HPC). It was previously demonstrated that interleukin-1 beta (IL-1 beta) stimulates the growth of the stromal microenvironment in vivo. The aim of this study was to investigate the effect of IL-1 beta treatment of human MMSCs on their proliferative potential, gene expression, immunomodulating properties, and their ability to support HPCs in vitro.

View Article and Find Full Text PDF

Gamma irradiation of tissues and organs leads to many pathological consequences due to the formation of reactive oxygen species, DNA damage and the subsequent massive death of cells. The therapeutic use of gamma irradiation in the treatment of cancer is based on its penetrating power and damaging effects on tumor cells. Other effects from the irradiation are unnoticeable in comparison.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MMSCs) are a heterogeneous population consisting of cells with a distinct proliferative potential. The aim of this study was to define clonal composition in MMSCs and trace the dynamics of individual clones in MMSC subpopulations with different proliferative potentials during the process of cultivation. The investigation was performed at single-cell level using genetically marked cells.

View Article and Find Full Text PDF

The efficacy and the safety of the administration of multipotent mesenchymal stromal cells (MMSCs) for acute graft-versus-host disease (aGVHD) prophylaxis following allogeneic hematopoietic cell transplantation (HSCT) were studied. This prospective clinical trial was based on the random patient allocation to the following two groups receiving (1) standard GVHD prophylaxis and (2) standard GVHD prophylaxis combined with MMSCs infusion. Bone marrow MMSCs from hematopoietic stem cell donors were cultured and administered to the recipients at doses of 0.

View Article and Find Full Text PDF

Objective: Massive liver infiltration by leukemic cells is an indicator of poor prognosis in some hemoblastoses. The aim of this study was to determine the mechanism of liver invasion by leukemic cells using the mouse model of transplantable myeloproliferative disease-like myeloid leukemia characterized by liver invasion.

Materials And Methods: CD45+ cells from the liver of mice transplanted with leukemic cells were sorted by magnetic separation.

View Article and Find Full Text PDF