This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium . BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed and tested, consisting of a rehydrated (S-RDH) BC film synthesized under static conditions, placed between two BioR-derived BC layers.
View Article and Find Full Text PDFThe study of polymers' rheological properties is of paramount importance both for the problems of their industrial production as well as for their practical application. Two polymers used for embolization of arteriovenous malformations (AVMs) are studied in this work: Onyx-18 and Squid-12. Viscosity curve tests and computational fluid dynamics (CFD) were used to uncover viscosity law as a function of shear rate as well as behavior of the polymers in catheter or pathological tissue models.
View Article and Find Full Text PDFA new method of spectral subtraction for gas-phase Fourier transform infrared (FT-IR) spectra was developed for long-path gas measurements. The method is based on minimization of the length of the spectrum that results from subtracting the spectrum of an individual component of a gas mixture (water, CO(2), etc.) from the experimental spectrum of the mixture.
View Article and Find Full Text PDFA theory developed suggested that significant displacement of solute in saturated porous media results from the propagation of compression waves. Four independent one-dimensional experimental setups and a variety of laboratory methods were used to confirm the predictions of the theory, specifically aimed at developing a novel method of inducing compression waves for use in remediation of contaminated aquifers. Compaction and shock waves were emitted through granular porous media saturated with saline water.
View Article and Find Full Text PDF