Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc.
View Article and Find Full Text PDFCurrently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain's resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase in the level of these neurotrophic factors in brain tissues using genetic engineering methods on the resistance of laboratory animals to hypoxia may pave the way for the future clinical use of neurotrophic factors BDNF and GDNF in the treatment of hypoxic damage. This study aimed to evaluate the antihypoxic and neuroprotective properties of BDNF and GDNF expression level increase using adeno-associated viral vectors in modeling hypoxia in vivo.
View Article and Find Full Text PDFThe high prevalence of diagnosed cases of severe neurological disorders, a significant proportion of which are epilepsy, contributes to a high level of mortality and disability in the population. Neurotrophic factors BDNF and GNDF are considered promising agents aimed at increasing the central nervous system's adaptive potential for the development of the epileptiform activity. Despite the pronounced neuroprotective and anticonvulsant potential, an appropriate way to stimulate these endogenous signaling molecules with minimal risk of side effects remains an open question.
View Article and Find Full Text PDFTranscription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a widespread chronic neurodegenerative pathology characterized by synaptic dysfunction, partial neuronal death, cognitive decline and memory impairments. The major hallmarks of AD are extracellular senile amyloid plaques formed by various types of amyloid proteins (Aβ) and the formation and accumulation of intracellular neurofibrillary tangles. However, there is a lack of relevant experimental models for studying changes in neural network activity, the features of intercellular signaling or the effects of drugs on the functional activity of nervous cells during AD development.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) has a pronounced neuroprotective effect in various nervous system pathologies, including ischaemic brain damage and neurodegenerative diseases. In this work, we studied the effect of GDNF on the ultrastructure and functional activity of neuron-glial networks during acute hypoxic exposure, a key damaging factor in numerous brain pathologies. We analysed the molecular mechanisms most likely involved in the positive effects of GDNF.
View Article and Find Full Text PDFZeb2 (Sip1, Zfhx1b) is a transcription factor that plays essential role in neuronal development. Sip1 mutation in humans was shown to cause Mowat-Wilson syndrome, a syndromic form of Hirschprung's disease. Affected individuals exhibit multiple severe neurodevelopmental defects.
View Article and Find Full Text PDFUnlabelled: Brain-derived neurotrophic factor (BDNF) is one of the key signaling molecules that supports the viability of neural cells in various brain pathologies, and can be considered a potential therapeutic agent. However, several methodological difficulties, such as overcoming the blood⁻brain barrier and the short half-life period, challenge the potential use of BDNF in clinical practice. Gene therapy could overcome these limitations.
View Article and Find Full Text PDFStrong immunosuppression occurs after severe traumatic brain injury (TBI) and most likely contributes substantially to the patient morbidity and mortality. However, the mechanisms of this immunosuppression are unknown. For the lowering of stressful factors, severe TBI was induced in anaesthetized rats.
View Article and Find Full Text PDF