We have characterized the imbibed horizontal flow of sickle blood into 100-μm-diameter glass capillaries. We find that blood containing sickled cells typically traverses the capillaries between three and four times as slowly as oxygenated cells from the same patient for all genotypes tested, including SS, AS, SC and Sβ thalassemia blood. Blood from SS patients treated with hydroxyurea has a viscosity intermediate between the SS and AA values.
View Article and Find Full Text PDFThe quantum phenomenon of shift photovoltaic current was predicted decades ago, but this effect was never observed directly because shift and ballistic currents coexist. The atomic-scale relaxation time of shift, along with the absence of a photo-Hall behavior, has made decisive measurement of shift elusive. Here, we report a facile, direct-current, steady-state method for unambiguous determination of shift by means of the simultaneous measurements of linear and circular bulk photovoltaic currents under magnetic field, in a sillenite piezoelectric crystal.
View Article and Find Full Text PDFMicrofluidics has found increasingly wide usage in the research and teaching laboratory, but setting up a facility for its production has typically required either significant capital expense or sacrifice of quality. We present an approach to produce devices, without a clean room, using LEDs and spin-coaters, and plasma bonded using a commercial microwave oven. Submicron features can be readily reproduced with good fidelity.
View Article and Find Full Text PDFSickle cell disease is fundamentally a kinetic disorder, in which cells containing the mutated hemoglobin (hemoglobin S; HbS) will cause occlusion if they sickle in the microvasculature, but have minimal (or no) consequences if they sickle in the venous return. Physiologically, sickling always occurs when some ligands are present; nonetheless, the kinetics in the presence of ligands are virtually unstudied. Sickling arises from nucleation-controlled polymer formation, triggered when the HbS loses ligands (e.
View Article and Find Full Text PDFSickle cell disease is a genetic disorder in which a negatively charged glutamic acid is replaced by a hydrophobic valine on the surface of the hemoglobin molecule, leading to polymerization of the deoxygenated form, and resulting in microvascular obstruction. Because of the high volume occupancy under which polymerization occurs physiologically, this process has been an exemplar in the study of excluded volume effects on assembly. More recently, we have identified yet another type of crowding effect involving the obstruction of the ends at which the polymers grow as a consequence of the dense arrays in which these polymers form.
View Article and Find Full Text PDFThe pathology of sickle cell disease arises from the occlusion of small blood vessels because of polymerization of the sickle hemoglobin within the red cells. We present measurements using a microfluidic method we have developed to determine the pressure required to eject individual red cells from a capillary-sized channel after the cell has sickled. We find that the maximum pressure is only ∼100 Pa, much smaller than typically found in the microcirculation.
View Article and Find Full Text PDFWe report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale.
View Article and Find Full Text PDFThe measurement of polymer growth is an essential element in characterization of assembly. We have developed a precise method of measuring the growth of sickle hemoglobin polymers by observing the time required for polymers to traverse a photolytically produced channel between a region in which polymers are created and a detection region. The presence of the polymer is functionally detected by observing its ability to create new polymers through the well-established process of heterogeneous nucleation.
View Article and Find Full Text PDFSickle cell disease is a rheological disease, yet no quantitative rheological data exist on microscopic samples at physiological concentrations. We have developed a novel method for measuring the microrheology of sickle hemoglobin gels, based on magnetically driven compression of 5- to 8-microm-thick emulsions containing hemoglobin droplets approximately 80 microm in diameter. Using our method, by observing the expansion of the droplet area as the emulsion is compressed, we were able to resolve changes in thickness of a few nanometers with temporal resolution of milliseconds.
View Article and Find Full Text PDFHigh-resolution images of oxygen distributions in microheterogeneous samples are obtained by two-photon laser scanning microscopy (2P LSM), using a newly developed dendritic nanoprobe with internally enhanced two-photon absorption (2PA) cross-section. In this probe, energy is harvested by a 2PA antenna, which passes excitation onto a phosphorescent metalloporphyrin via intramolecular energy transfer. The 2P LSM allows sectioning of oxygen gradients with near diffraction-limited resolution, and lifetime-based acquisition eliminates dependence on the local probe concentration.
View Article and Find Full Text PDFSickle hemoglobin (HbS) polymerization occurs when the concentration of deoxyHbS exceeds a well-defined solubility. In experiments using sickle hemoglobin droplets suspended in oil, it has been shown that when polymerization ceases the monomer concentration is above equilibrium solubility. We find that the final concentration in uniform bulk solutions (i.
View Article and Find Full Text PDFSickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin beta chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolysing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37 degrees C, though the particular values depend on the details of the experiment.
View Article and Find Full Text PDFPolymerization of a 1:1 mixture of hemoglobin S (Hb S) and the artificial mutant HbAbeta73Leu produces a dramatic morphological change in the polymer domains in 1.0 M phosphate buffer that are a characteristic feature of polymer formation. Instead of feathery domains with quasi 2-fold symmetry that characterize polymerization of Hb S and all previously known mixtures such as Hb A/S and Hb F/S mixtures, these domains are compact structures of quasi-spherical symmetry.
View Article and Find Full Text PDFThe dominant assumption central to most treatments for sickle cell anemia has been that replacement of sickle hemoglobin (HbS) by fetal hemoglobin (HbF) would have major clinical benefit. Using laser photolysis, we have measured polymerization kinetics including rates of homogeneous and heterogeneous nucleation on mixtures of 20% and 30% HbF with HbS. We find that the present model for polymerization, including molecular crowding, can accurately predict the rates of such mixtures, by using the single assumption that no significant amount of HbF enters the polymer.
View Article and Find Full Text PDFPathology in sickle cell disease begins with nucleation-dependent polymerization of deoxyhemoglobin S into stiff, rodlike fibers that deform and rigidify red cells. We have measured the effect of erythrocyte membranes on the rate of homogeneous nucleation in sickle hemoglobin, using preparations of open ghosts (OGs) with intact cytoskeletons from sickle (SS) and normal adult (AA) red cells. Nucleation rates were measured by inducing polymerization by laser photolysis of carboxy sickle hemoglobin and observing stochastic variation of replicate experiments of the time for the scattering signals to reach 10% of their respective maxima.
View Article and Find Full Text PDF