Dimensionality reduction is an important exploratory data analysis method that allows high-dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively applied in the analysis of chemical libraries, where chemical structure data - represented as high-dimensional feature vectors-are transformed into 2D or 3D chemical space maps. In this paper, commonly used dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Generative Topographic Mapping (GTM) - are evaluated in terms of neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL database.
View Article and Find Full Text PDFEvolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery.
View Article and Find Full Text PDFCarbon capture and storage technologies are projected to increasingly contribute to cleaner energy transitions by significantly reducing CO emissions from fossil fuel-driven power and industrial plants. The industry standard technology for CO capture is chemical absorption with aqueous alkanolamines, which are often being mixed with an activator, piperazine, to increase the overall CO absorption rate. Inefficiency of the process due to the parasitic energy required for thermal regeneration of the solvent drives the search for new tertiary amines with better kinetics.
View Article and Find Full Text PDFAmphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC values below 1.
View Article and Find Full Text PDFThe removal of CO from gases is an important industrial process in the transition to a low-carbon economy. The use of selective physical (co-)solvents is especially perspective in cases when the amount of CO is large as it enables one to lower the energy requirements for solvent regeneration. However, only a few physical solvents have found industrial application and the design of new ones can pave the way to more efficient gas treatment techniques.
View Article and Find Full Text PDFAntimicrobial resistance is a global threat. The use of biologically active natural products alone or in combination with the clinically proven antimicrobial agents might be a useful strategy to fight the resistance. The scientific hypotheses of this study were twofold: (1) the natural humic substances rich in dicarboxyl, phenolic, heteroaryl, and other fragments might possess inhibitory activity against β-lactamases, and (2) this inhibitory activity might be linked to the molecular composition of the humic ensemble.
View Article and Find Full Text PDFRigid amphipathic fusion inhibitors are potent broad-spectrum antivirals based on the perylene scaffold, usually decorated with a hydrophilic group linked via ethynyl or triazole. We have sequentially simplified these structures by removing sugar moiety, then converting uridine to aniline, then moving to perylenylthiophenecarboxylic acids and to perylenylcarboxylic acid. All these polyaromatic compounds, as well as antibiotic heliomycin, still showed pronounced activity against tick-borne encephalitis virus (TBEV) with limited toxicity in porcine embryo kidney (PEK) cell line.
View Article and Find Full Text PDFHumic substances (HS) are complex natural mixtures comprising a large variety of compounds produced during decomposition of decaying biomass. The molecular composition of HS is extremely diverse as it was demonstrated with the use of high resolution mass spectrometry. The building blocks of HS are mostly represented by plant-derived biomolecules (lignins, lipids, tannins, carbohydrates, etc.
View Article and Find Full Text PDFThe propargylamide of N3-Pom-protected 5-(perylen-3-ylethynyl)uracil acetic acid, a universal precursor, was used in a CuAAC click reaction for the synthesis of several derivatives, including three ramified molecules with high activities against tick-borne encephalitis virus (TBEV). Pentaerythritol-based polyazides were used for the assembly of molecules containing 2⋯4 antiviral 5-(perylen-3-ylethynyl)uracil scaffolds, the first examples of polyvalent perylene antivirals. Cluster compounds showed enhanced absorbance, however, their fluorescence was reduced due to self-quenching.
View Article and Find Full Text PDFRigid amphipathic fusion inhibitors (RAFIs) are potent antivirals based on a perylene core linked with a nucleoside moiety. Sugar-free analogues of RAFIs, 5-(perylen-3-ylethynyl)uracil-1-acetic acid 1 and its amides 2, were synthesized using combined protection group strategy. Compounds 1 and 2 appeared to have low toxicity on porcine embryo kidney (PEK) or rhabdomiosarcoma (RD) cells together with remarkable activity against enveloped tick-borne encephalitis virus (TBEV): EC values vary from 0.
View Article and Find Full Text PDFRecent outbreaks of dangerous viral infections, such as Ebola virus disease, Zika fever, etc., are forcing the search for new antiviral compounds. Preferably, such compounds should possess broad-spectrum antiviral activity, as the development of drugs for the treatment of dozens of viral infections lacking specific treatment would require significant resources.
View Article and Find Full Text PDFThe discovery of antiviral drugs is a rapidly developing area of medicinal chemistry research. The emergence of resistant variants and outbreaks of poorly studied viral diseases make this area constantly developing. The amount of antiviral activity data available in ChEMBL consistently grows, but virus taxonomy annotation of these data is not sufficient for thorough studies of antiviral chemical space.
View Article and Find Full Text PDFThe phenoxazine scaffold is widely used to stabilize nucleic acid duplexes, as a part of fluorescent probes for the study of nucleic acid structure, recognition, and metabolism, etc. Here we present the synthesis of phenoxazine-based nucleoside derivatives and their antiviral activity against a panel of structurally diverse viruses: enveloped DNA herpesviruses varicella zoster virus (VZV) and human cytomegalovirus, enveloped RNA tick-borne encephalitis virus (TBEV), and non-enveloped RNA enteroviruses. Studied compounds were effective against DNA and RNA viruses reproduction in cell culture.
View Article and Find Full Text PDFA series of analogues of potent antiviral perylene nucleoside dUY11 with methylthiomethyl (MTM), azidomethyl (AZM) and HO-C-alkyl-1,2,3-triazol-1,4-diyl groups at 3'-O-position as well as the two products of copper-free alkyne-azide cycloaddition of the AZM derivative were prepared and evaluated against tick-borne encephalitis virus (TBEV). Four compounds (4, 6, 8a, 8b) showed EC ≤ 10 nM, thus appearing the most potent TBEV inhibitors to date. Moreover, these nucleosides have higher lipophilicity (clogP) and increased solubility in aq.
View Article and Find Full Text PDFIdentification of molecular targets and mechanism of action is always a challenge, in particular - for natural compounds due to inherent chemical complexity. BP-Cx-1 is a water-soluble modification of hydrolyzed lignin used as the platform for a portfolio of innovative pharmacological products aimed for therapy and supportive care of oncological patients. The present study describes a new approach, which combines screening of potential molecular targets for BP-Cx-1 using Diversity Profile - P9 panel by Eurofins Cerep (France) with a search of possible active components in ChEMBL - manually curated chemical database of bioactive molecules with drug-like properties.
View Article and Find Full Text PDFTick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is the leading cause of arboviral neuroinfections in Europe. Only a few classes of the nucleoside and non-nucleoside inhibitors were investigated against TBEV reproduction. Paving the way to previously unexplored areas of anti-TBEV chemical space, we assessed the inhibition of TBEV reproduction in the plaque reduction assay by various compounds derived from cyanothioacetamide and cyanoselenoacetamide.
View Article and Find Full Text PDFThe rational design of broad-spectrum antivirals requires data on antiviral activity of compounds against multiple viruses, which are often not available. We have developed a panel of (+)ssRNA viruses composed of and genera members allowing to study these activity spectra. Antiviral activity profiling of a set of nucleoside analogues revealed -hydroxycytidine as an efficient inhibitor of replication of coxsackieviruses and other enteroviruses, but ineffective against tick-borne encephalitis virus.
View Article and Find Full Text PDF1-Substituted 4-perylen-2(3)-yl-1,2,3-triazoles, easily accessible by 'click' reaction and combining in one molecule a polyaromatic unit and a nitrogen heterocycle, were found to strongly inhibit the reproduction of enveloped viruses. 5-[4-(Perylen-3-yl)-1,2,3-triazol-1-yl]-uridine and 2-[1-(2-hydroxyethyl)-1,2,3-triazol-4-yl]perylene show EC of 0.031 and 0.
View Article and Find Full Text PDFDesign and development of nucleoside analogs is an established strategy in the antiviral drug discovery field. Nevertheless, for many viruses the coverage of structure-activity relationships (SAR) in the nucleoside chemical space is not sufficient. Here we present the nucleoside SAR exploration for tick-borne encephalitis virus (TBEV), a member of Flavivirus genus.
View Article and Find Full Text PDFIntroduction: The concept of 'chemical space' reveals itself in two forms: the discrete set of all possible molecules, and multi-dimensional descriptor space encompassing all the possible molecules. Approaches based on this concept are widely used for the analysis and enumeration of compound databases, library design, and structure-activity relationships (SAR) and landscape studies. Visual representations of chemical space differ in their applicability domains and features and require expert knowledge for choosing the right tool for a particular problem.
View Article and Find Full Text PDF