Publications by authors named "Alexey A Lagunin"

The accurate prediction of secondary structures of proteins (SSPs) is a critical challenge in molecular biology and structural bioinformatics. Despite recent advancements, this task remains complex and demands further exploration. This study presents a novel approach to SSP prediction using atom-centric substructural multilevel neighborhoods of atoms (MNA) descriptors for protein molecular fragments.

View Article and Find Full Text PDF

The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.

View Article and Find Full Text PDF

Auditory neuropathy spectrum disorder (ANSD) associated with mutations of the OTOF gene is one of the common types of sensorineural hearing loss of a hereditary nature. Due to its high genetic heterogeneity, ANSD is considered one of the most difficult hearing disorders to diagnose. The dataset from 270 known annotated single amino acid substitutions (SAV) related to ANSD was created.

View Article and Find Full Text PDF

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.

View Article and Find Full Text PDF

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1).

View Article and Find Full Text PDF

Drug resistance to anticancer drugs is a serious complication in patients with cancer. Typically, drug resistance occurs due to amino acid substitutions (AAS) in drug target proteins. The study aimed at developing and validating a new approach to the creation of structure-property relationships (SPR) classification models to predict AASs leading to drug resistance to inhibitors of tyrosine-protein kinase ABL1.

View Article and Find Full Text PDF

Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients.

View Article and Find Full Text PDF

Introduction: Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging.

View Article and Find Full Text PDF

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.

View Article and Find Full Text PDF

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases.

View Article and Find Full Text PDF

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds.

View Article and Find Full Text PDF

The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (-, -, -) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the - and -substituted substrates, the reaction involving -derivatives at the boiling point of methanol unexpectedly led to the formation of a salt.

View Article and Find Full Text PDF

Prediction of protein-ligand interaction is necessary for drug design, gene regulatory networks investigation, and chemical probes detection. The existing methods commonly demonstrate high prediction accuracy for the particular groups of protein and their ligands. We developed an approach suited for the wider applicability and tested it on three dataset types significantly differing by protein homology.

View Article and Find Full Text PDF

Assessment of structure-activity relationships (SARs) for predicting severe drug-induced liver injury (DILI) is essential since and preclinical methods cannot detect many druglike compounds disrupting liver functions. To date, plenty of SAR models for the prediction of DILI have been developed; however, none of them considered the route of drug administration and daily dose, which may introduce significant bias into prediction results. We have created a dataset of 617 drugs with parenteral and oral administration routes and consistent information on DILI severity.

View Article and Find Full Text PDF

We performed an in silico, in vitro, and in vivo assessment of a potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (compound ) as a potential prodrug for cognitive function improvement in ischemic brain injury. Using in silico methods, we predicted the pharmacological efficacy and possible safety in rat models. In addition, in silico data showed neuroprotective features of compound , which were further supported by in vitro experiments in a glutamate excitotoxicity-induced model in newborn rat cortical neuron cultures.

View Article and Find Full Text PDF

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4.

View Article and Find Full Text PDF

Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia.

View Article and Find Full Text PDF

Discovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required.

View Article and Find Full Text PDF

Numerous studies have been published in recent years with acceptable quantitative structure-activity relationship (QSAR) modeling based on heterogeneous data. In many cases, the training sets for QSAR modeling were constructed from compounds tested by different biological assays, contradicting the opinion that QSAR modeling should be based on the data measured by a single protocol. We attempted to develop approaches that help to determine how heterogeneous data should be used for the creation of QSAR models on the basis of different sets of compounds tested by different experimental methods for the same target and the same endpoint.

View Article and Find Full Text PDF

Drug-drug interaction (DDI) is the phenomenon of alteration of the pharmacological activity of a drug(s) when another drug(s) is co-administered in cases of so-called polypharmacy. There are three types of DDIs: pharmacokinetic (PK), pharmacodynamic, and pharmaceutical. PK is the most frequent type of DDI, which often appears as a result of the inhibition or induction of drug-metabolising enzymes (DME).

View Article and Find Full Text PDF

Estimation of interaction of drug-like compounds with antitargets is important for the assessment of possible toxic effects during drug development. Publicly available online databases provide data on the experimental results of chemical interactions with antitargets, which can be used for the creation of (Q)SAR models. The structures and experimental K and IC values for compounds tested on the inhibition of 30 antitargets from the ChEMBL 20 database were used.

View Article and Find Full Text PDF

Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of "active" and "inactive" compounds included in the training sets.

View Article and Find Full Text PDF

In silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL.

View Article and Find Full Text PDF

Application of structure-activity relationships (SARs) for the prediction of adverse effects of drugs (ADEs) has been reported in many published studies. Training sets for the creation of SAR models are usually based on drug label information which allows for the generation of data sets for many hundreds of drugs. Since many ADEs may not be related to drug consumption, one of the main problems in such studies is the quality of data on drug-ADE pairs obtained from labels.

View Article and Find Full Text PDF

A new freely available web-application MetaTox ( http://www.way2drug.com/mg ) for prediction of xenobiotic's metabolism and calculation toxicity of metabolites based on the structural formula of chemicals has been developed.

View Article and Find Full Text PDF