Over the last decade, considerable progress has been made in unraveling RNA virus diversity. This has contributed to our understanding of the evolution of these viruses, which include emerging zoonotic human pathogens. Current success has been greatly facilitated by the development of next-generation sequencing platforms instrumental for meta-transcriptomic studies.
View Article and Find Full Text PDFBackground: In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species.
View Article and Find Full Text PDFTrypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families , , and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: and .
View Article and Find Full Text PDFNearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri.
View Article and Find Full Text PDF, for which only bat bugs (Cimicidae) had previously been demonstrated as vectors, was, for the first time, detected in the gamasine mite in Russia. The molecular phylogenetic analysis indicated that trypanosomes found in these mites belong to the "clade A" of , which, based on genetic distances, can be considered as a species separate from the sister clade B, and according to available data also has a distinct geographic distribution. The presence of developmental forms of resembling those previously described during the development of this trypanosome in cimicids suggests that is a novel vector of the studied trypanosome.
View Article and Find Full Text PDFIn this work, we investigated parasites of the firebug Pyrrhocoris apterus in Austria and demonstrated that in addition to the extensively studied Leptomonas pyrrhocoris, it can also be infected by Blastocrithidia sp. and by a mermithid, which for the first time has been characterized using molecular methods. This diversity can be explained by the gregarious lifestyle, as well as the coprophagous and cannibalistic behavior of the insect hosts that makes them susceptible to various parasites.
View Article and Find Full Text PDFThe number of sequenced trypanosomatid genomes has reached a critical point so that they are now available for almost all genera and subgenera. Based on this, we inferred a phylogenomic tree and propose it as a framework to study trait evolution together with some examples of how to do it.
View Article and Find Full Text PDFBackground: Trypanosomatids are parasitic flagellates well known because of some representatives infecting humans, domestic animals, and cultural plants. Many trypanosomatid species bear RNA viruses, which, in the case of human pathogens Leishmania spp., influence the course of the disease.
View Article and Find Full Text PDFRNA viruses play an important role in Leishmania biology and virulence. Their presence was documented in three (out of four) Leishmania subgenera. Sauroleishmania of reptiles remained the only underinvestigated group.
View Article and Find Full Text PDFTatra chamois ( (Blahout 1972)) and Tatra marmot ( (Kratochvíl 1961)) are significant endemic subspecies of the subalpine and alpine ranges of the Tatra Mountains in Central Europe. In four studied localities in the range of their typical biotopes in Slovakia and Poland, we investigated intestinal parasites of Tatra chamois and Tatra marmots, with an emphasis on anoplocephalid tapeworms. We also studied the occurrence, species diversity, and abundance of oribatid mites as intermediate hosts thereof, and the prevalence of cysticercoid larval stages of anoplocephalid tapeworms in collected oribatids using morphological and molecular methods.
View Article and Find Full Text PDFLeishmaniasis is a complex human disease caused by intracellular parasites of the genus Leishmania, predominantly transmitted by the bite of sand flies. In Italy, leishmaniasis is caused exclusively by Leishmania infantum, responsible for the human and canine visceral leishmaniases (HVL and CVL, respectively). Within the Emilia-Romagna region, two different foci are active in the municipalities of Pianoro and Valsamoggia (both in the province of Bologna).
View Article and Find Full Text PDFLeishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus . Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two spp. with their respective viral species (, LRV1 and L.
View Article and Find Full Text PDFBackground: Trypanosoma theileri species complex includes parasites of Bovidae (cattle, sheep, goat, etc.) and Cervidae (deer) transmitted mainly by Tabanidae (horse flies and deerflies) and keds (Hippoboscidae). While morphological discrimination of species is challenging, two big clades, TthI and TthII, each containing parasites isolated from bovids and cervids, have been identified phylogenetically.
View Article and Find Full Text PDFMost trypanosomatid flagellates do not have catalase. In the evolution of this group, the gene encoding catalase has been independently acquired at least three times from three different bacterial groups. Here, we demonstrate that the catalase of was obtained by horizontal gene transfer from Gammaproteobacteria, extending the list of known bacterial sources of this gene.
View Article and Find Full Text PDFThe closest relative of human pathogen , the trypanosomatid , harbors a bacterial endosymbiont " Pandoraea novymonadis." Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins.
View Article and Find Full Text PDFHere we describe the new trypanosomatid, Phytomonas borealis sp. n., from the midgut of the spiked shieldbugs, Picromerus bidens (Linnaeus), collected in two locations, Novgorod and Pskov Oblasts of Russia.
View Article and Find Full Text PDFProtein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host's phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before.
View Article and Find Full Text PDFThe extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.
View Article and Find Full Text PDFHere we report that trypanosomatid flagellates of the genus Blastocrithidia possess catalase. This enzyme is not phylogenetically related to the previously characterized catalases in other monoxenous trypanosomatids, suggesting that their genes have been acquired independently. Surprisingly, Blastocrithidia catalase is less enzymatically active, compared to its counterpart from Leptomonas pyrrhocoris, posing an intriguing biological question why this gene has been retained in the evolution of trypanosomatids.
View Article and Find Full Text PDFBackground: Amphibian trypanosomes were the first ever described trypanosomatids. Nevertheless, their taxonomy remains entangled because of pleomorphism and high prevalence of mixed infections. Despite the fact that the first species in this group were described in Europe, virtually none of the trypanosomes from European anurans was analyzed using modern molecular methods.
View Article and Find Full Text PDF